Partner – Microsoft – NPI EA (cat = Baeldung)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Microsoft – NPI EA (cat= Spring Boot)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, you can get started over on the documentation page.

And, you can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Orkes – NPI EA (cat=Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag=Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – MongoDB – NPI EA (tag=MongoDB)
announcement - icon

Traditional keyword-based search methods rely on exact word matches, often leading to irrelevant results depending on the user's phrasing.

By comparison, using a vector store allows us to represent the data as vector embeddings, based on meaningful relationships. We can then compare the meaning of the user’s query to the stored content, and retrieve more relevant, context-aware results.

Explore how to build an intelligent chatbot using MongoDB Atlas, Langchain4j and Spring Boot:

>> Building an AI Chatbot in Java With Langchain4j and MongoDB Atlas

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Accessibility testing is a crucial aspect to ensure that your application is usable for everyone and meets accessibility standards that are required in many countries.

By automating these tests, teams can quickly detect issues related to screen reader compatibility, keyboard navigation, color contrast, and other aspects that could pose a barrier to using the software effectively for people with disabilities.

Learn how to automate accessibility testing with Selenium and the LambdaTest cloud-based testing platform that lets developers and testers perform accessibility automation on over 3000+ real environments:

Automated Accessibility Testing With Selenium

1. Introduction

This article takes a look at Neuroph – an open-source library for creating neural networks and utilizing machine learning.

In the article, we have a look at the core concepts and several examples on how to put it all together.

2. Neuroph

We can interact with Neuroph using:

  • a GUI-based tool
  • a Java library

Both approaches rely on an underlying class hierarchy which builds artificial neural networks out of layers of neurons.

We’ll focus on the programmatic side but will refer to several shared classes from Neuroph’s GUI-based approach to help clarify what we’re doing.

For more on the GUI-based approach, take a look at the Neuroph documentation.

2.1. Dependencies

If order to use Neuroph, we need to add the following Maven entry:

<dependency>
    <groupId>org.beykery</groupId>
    <artifactId>neuroph</artifactId>
    <version>2.92</version>
</dependency>

The most recent version can be found on Maven Central.

3. Key Classes and Concepts

All of the basic conceptual building blocks used have corresponding Java classes.

Neurons are connected to Layers which are then grouped into NeuralNetworks. NeuralNetworks are subsequently trained using LearningRules and DataSets.

3.1. Neuron

The Neuron class has four primary attributes:

  1. inputConnection: weighted connections between Neurons
  2. inputFunction: specifies weights and vector sums applied to incoming connection data
  3. transferFunction: specifies weights and vector sums applied to outgoing data
  4. output: the output value resulting from the application of transferFunctions and inputFunctions to an inputConnection

Together those four primary attributes establish the behavior:

output = transferFunction(inputFunction(inputConnections));

3.2. Layer

Layers are essentially groupings of Neurons such that each Neuron in the Layer is (usually) only connected with Neurons in the preceding and subsequent Layers.

Layers, therefore, pass information between them through the weighted functions that exist on their Neurons.

Neurons can be added to layers:

Layer layer = new Layer(); 
layer.addNeuron(n);

3.3. NeuralNetwork

The top-level superclass NeuralNetwork is subclassed into several familiar kinds of artificial neural networks including convolutional neural networks (subclass ConvolutionalNetwork), Hopfield neural networks (subclass Hopfield), and multilayer perceptron neural networks (subclass MultilayerPerceptron).

All NeuralNetworks are composed of Layers which are usually organized into a trichotomy:

  1. input layers
  2. hidden layers
  3. output layers

If we are using the constructor of a subclass of NeuralNetwork (such as Perceptron), we can pass the Layers, the number of Neurons for each Layer, and their index using this simple method:

NeuralNetwork ann = new Perceptron(2, 4, 1);

Sometimes we’ll want to do this manually (and it’s good to see what’s going on underneath the hood). The basic operation to add a Layer to a NeuralNetwork is accomplished like this:

NeuralNetwork ann = new NeuralNetwork();   
Layer layer = new Layer();
ann.addLayer(0, layer);
ann.setInputNeurons(layer.getNeurons());

The first argument specifies the index of the Layer in the NeuralNetwork; the second argument specifies the Layer itself. Layers added manually should be connected using the ConnectionFactory class:

ann.addLayer(0, inputLayer);    
ann.addLayer(1, hiddenLayerOne); 
ConnectionFactory.fullConnect(ann.getLayerAt(0), ann.getLayerAt(1));

The first and last Layer should also be connected:

ConnectionFactory.fullConnect(ann.getLayerAt(0), 
  ann.getLayerAt(ann.getLayersCount() - 1), false);
ann.setOutputNeurons(ann.getLayerAt(
  ann.getLayersCount() - 1).getNeurons());

Remember that the strength and power of a NeuralNetwork are largely dependent on:

  1. the number of Layers in the NeuralNetwork
  2. the number of Neurons in each Layer (and the weighted functions between them), and
  3. the effectiveness of the training algorithms/accuracy of the DataSet

3.4. Training Our NeuralNetwork

NeuralNetworks are trained using the DataSet and LearningRule classes.

DataSet is used for representing and supplying the information to be learned or used to train the NeuralNetwork. DataSets are characterized by their input size, outputsize, and rows (DataSetRow).

int inputSize = 2; 
int outputSize = 1; 
DataSet ds = new DataSet(inputSize, outputSize);

DataSetRow rOne 
  = new DataSetRow(new double[] {0, 0}, new double[] {0});
ds.addRow(rOne);
DataSetRow rTwo 
  = new DataSetRow(new double[] {1, 1}, new double[] {0});
ds.addRow(rTwo);

LearningRule specifies the way the DataSet is taught or trained by the NeuralNetwork. Subclasses of LearningRule include BackPropagation and SupervisedLearning.

NeuralNetwork ann = new NeuralNetwork();
//...
BackPropagation backPropagation = new BackPropagation();
backPropagation.setMaxIterations(1000);
ann.learn(ds, backPropagation);

4. Putting It All Together

Now let’s put those building blocks together into a real example. We’re going to start by combining several layers together into the familiar input layer, hidden layer, and output layer pattern exemplified by most neural network architectures.

4.1. Layers

We’ll assemble our NeuralNetwork by combining four layers. Our goal is to build a (2, 4, 4, 1) NeuralNetwork.

Let’s first define our input layer:

Layer inputLayer = new Layer();
inputLayer.addNeuron(new Neuron());
inputLayer.addNeuron(new Neuron());

Next, we implement hidden layer one:

Layer hiddenLayerOne = new Layer();
hiddenLayerOne.addNeuron(new Neuron());
hiddenLayerOne.addNeuron(new Neuron());
hiddenLayerOne.addNeuron(new Neuron());
hiddenLayerOne.addNeuron(new Neuron());

And hidden layer two:

Layer hiddenLayerTwo = new Layer(); 
hiddenLayerTwo.addNeuron(new Neuron()); 
hiddenLayerTwo.addNeuron(new Neuron()); 
hiddenLayerTwo.addNeuron(new Neuron()); 
hiddenLayerTwo.addNeuron(new Neuron());

Finally, we define our output layer:

Layer outputLayer = new Layer();
outputLayer.addNeuron(new Neuron()); 

4.2. NeuralNetwork

Next, we can put them together into a NeuralNetwork:

NeuralNetwork ann = new NeuralNetwork();
ann.addLayer(0, inputLayer);
ann.addLayer(1, hiddenLayerOne);
ConnectionFactory.fullConnect(ann.getLayerAt(0), ann.getLayerAt(1));
ann.addLayer(2, hiddenLayerTwo);
ConnectionFactory.fullConnect(ann.getLayerAt(1), ann.getLayerAt(2));
ann.addLayer(3, outputLayer);
ConnectionFactory.fullConnect(ann.getLayerAt(2), ann.getLayerAt(3));
ConnectionFactory.fullConnect(ann.getLayerAt(0), 
  ann.getLayerAt(ann.getLayersCount()-1), false);
ann.setInputNeurons(inputLayer.getNeurons());
ann.setOutputNeurons(outputLayer.getNeurons());

4.3. Training

For training purposes, let’s put together a DataSet by specifying the size of both the input and resulting output vector:

int inputSize = 2;
int outputSize = 1;
DataSet ds = new DataSet(inputSize, outputSize);

We add an elementary row to our DataSet adhering to the input and output constraints defined above – our goal in this example is to teach our network to do basic XOR (exclusive or) operations:

DataSetRow rOne
  = new DataSetRow(new double[] {0, 1}, new double[] {1});
ds.addRow(rOne);
DataSetRow rTwo
  = new DataSetRow(new double[] {1, 1}, new double[] {0});
ds.addRow(rTwo);
DataSetRow rThree 
  = new DataSetRow(new double[] {0, 0}, new double[] {0});
ds.addRow(rThree);
DataSetRow rFour
  = new DataSetRow(new double[] {1, 0}, new double[] {1});
ds.addRow(rFour);

Next, let’s train our NeuralNetwork with the built in BackPropogation LearningRule:

BackPropagation backPropagation = new BackPropagation();
backPropagation.setMaxIterations(1000);
ann.learn(ds, backPropagation);

4.4. Testing

Now that our NeuralNetwork is trained up let’s test it out. For each pair of logical values passed into our DataSet as a DataSetRow, we run the following kind of test:

ann.setInput(0, 1);
ann.calculate();
double[] networkOutputOne = ann.getOutput();

An important thing to remember is that NeuralNetworks only output a value on the inclusive interval of 0 and 1. To output some other value, we must normalize and denormalize our data.

In this case, for logical operations, 0 and 1 are perfect for the job. The output will be:

Testing: 1, 0 Expected: 1.0 Result: 1.0
Testing: 0, 1 Expected: 1.0 Result: 1.0
Testing: 1, 1 Expected: 0.0 Result: 0.0
Testing: 0, 0 Expected: 0.0 Result: 0.0

We see that our NeuralNetwork successfully predicts the right answer!

5. Conclusion

We’ve just reviewed the basic concepts and classes used by Neuroph.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

Partner – Microsoft – NPI EA (cat = Baeldung)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Microsoft – NPI EA (cat = Spring Boot)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Orkes – NPI EA (cat = Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag = Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Partner – MongoDB – NPI EA (tag=MongoDB)
announcement - icon

Traditional keyword-based search methods rely on exact word matches, often leading to irrelevant results depending on the user's phrasing.

By comparison, using a vector store allows us to represent the data as vector embeddings, based on meaningful relationships. We can then compare the meaning of the user’s query to the stored content, and retrieve more relevant, context-aware results.

Explore how to build an intelligent chatbot using MongoDB Atlas, Langchain4j and Spring Boot:

>> Building an AI Chatbot in Java With Langchain4j and MongoDB Atlas

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

eBook Jackson – NPI EA – 3 (cat = Jackson)