Partner – Microsoft – NPI EA (cat = Baeldung)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Microsoft – NPI EA (cat= Spring Boot)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, you can get started over on the documentation page.

And, you can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Orkes – NPI EA (cat=Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag=Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – MongoDB – NPI EA (tag=MongoDB)
announcement - icon

Traditional keyword-based search methods rely on exact word matches, often leading to irrelevant results depending on the user's phrasing.

By comparison, using a vector store allows us to represent the data as vector embeddings, based on meaningful relationships. We can then compare the meaning of the user’s query to the stored content, and retrieve more relevant, context-aware results.

Explore how to build an intelligent chatbot using MongoDB Atlas, Langchain4j and Spring Boot:

>> Building an AI Chatbot in Java With Langchain4j and MongoDB Atlas

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Accessibility testing is a crucial aspect to ensure that your application is usable for everyone and meets accessibility standards that are required in many countries.

By automating these tests, teams can quickly detect issues related to screen reader compatibility, keyboard navigation, color contrast, and other aspects that could pose a barrier to using the software effectively for people with disabilities.

Learn how to automate accessibility testing with Selenium and the LambdaTest cloud-based testing platform that lets developers and testers perform accessibility automation on over 3000+ real environments:

Automated Accessibility Testing With Selenium

eBook – Reactive – NPI(cat= Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

1. Introduction

Apache Kafka is a popular distributed event streaming platform, and when combined with Project Reactor, it enables building resilient and reactive applications. Reactor Kafka is a reactive API built on top of both Reactor and the Kafka Producer/Consumer API.

Reactor Kafka API enables us to publish messages to and consume messages from Kafka using functional, non-blocking APIs with backpressure support. This means that the system can dynamically adjust the rate of message processing based on demand and resource availability, ensuring efficient and fault-tolerant operations.

In this tutorial, we’ll explore how to create Kafka consumers using Reactor Kafka, ensuring fault tolerance and reliability. We’ll dive into key concepts such as backpressure, retries, and error handling while processing messages asynchronously, in a non-blocking manner.

2. Setting up the Project

To get started, we should include Spring Kafka and Reactor Kafka Maven dependencies in our project:

<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
</dependency>

<dependency>
    <groupId>io.projectreactor.kafka</groupId>
    <artifactId>reactor-kafka</artifactId>
</dependency>

3. Reactive Kafka Consumer Setup

Next, we’ll set up a Kafka consumer using Reactor Kafka. We’ll start by configuring the necessary consumer properties, ensuring it’s properly set up to connect with Kafka. Then, we’ll initialize the consumer, and finally, see how to consume messages reactively.

3.1. Configuring Kafka Consumer Properties

Now, let’s configure the Reactive Kafka consumer properties. The KafkaConfig configuration class defines the properties to be used by the consumer:

public class KafkaConfig {

    @Value("${spring.kafka.bootstrap-servers}")
    private String bootstrapServers;

    public static Map<String, Object> consumerConfig() {
        Map<String, Object> config = new HashMap<>();
        config.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
        config.put(ConsumerConfig.GROUP_ID_CONFIG, "reactive-consumer-group");
        config.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
        config.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        config.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        return config;
    }
}

ConsumerConfig.GROUP_ID_CONFIG defines the consumer group and it enables message load balancing across consumers. All consumers in the same group are responsible for processing messages from a topic.

Next, we use the configuration class when instantiating a ReactiveKafkaConsumerTemplate to consume events:

public ReactiveKafkaConsumerTemplate<String, String> reactiveKafkaConsumerTemplate() {
    return new ReactiveKafkaConsumerTemplate<>(receiverOptions());
}

private ReceiverOptions<String, String> receiverOptions() {
    Map<String, Object> consumerConfig = consumerConfig();
    ReceiverOptions<String, String> receiverOptions = ReceiverOptions.create(consumerConfig);
        return receiverOptions.subscription(Collections.singletonList("test-topic"));
}

The receiverOptions() method configures the Kafka consumer with the settings from consumerConfig() and subscribes to test-topic, to ensure it listens for the messages. The reactiveKafkaConsumerTemplate() method initializes a ReactiveKafkaConsumerTemplate, enabling non-blocking, backpressure-aware message consumption for our reactive application.

3.2. Creating a Kafka Consumer With Reactive Kafka

In Reactor Kafka, the abstraction of choice on Kafka Consumer is an inbound Flux where all events received from Kafka are published by the framework. This Flux is created by calling one of the receive(), receiveAtmostOnce(), receiveAutoAck(), and receiveExactlyOnce() methods on the ReactiveKafkaConsumerTemplate.

In this example, we use the receive() operator to consume the inbound Flux:

public class ConsumerService {

    private final ReactiveKafkaConsumerTemplate<String, String> reactiveKafkaConsumerTemplate;

    public Flux<String> consumeRecord() {
        return reactiveKafkaConsumerTemplate.receive()
          .map(ReceiverRecord::value)
          .doOnNext(msg -> log.info("Received: {}", msg))
          .doOnError(error -> log.error("Consumer error: {}", error.getMessage()));
    }
}

This approach allows the system to process messages reactively as they arrive without blocking or losing messages. By using reactive streams, the consumer can scale and process messages at its own pace, applying backpressure when necessary. Here we log each message received through doOnNext() and also log errors with doOnError().

4. Handling Backpressure

One of the main advantages of using Reactor Kafka consumers is that it supports backpressure. This ensures that the system doesn’t get overwhelmed by high throughput. Instead of directly consuming messages, we can limit the processing rate using limitRate() or batch processing using buffer():

public Flux<String> consumeWithLimit() {
    return reactiveKafkaConsumerTemplate.receive()
      .limitRate(2)
      .map(ReceiverRecord::value);
}

Here we request up to two messages at a time, controlling the flow. This approach ensures efficient and backpressure-aware message processing. Finally, it extracts and returns only the message values.

Instead of processing them individually, we can also consume them in batches by buffering a fixed number of records before emitting them as a group:

public Flux<String> consumeAsABatch() {
    return reactiveKafkaConsumerTemplate.receive()
      .buffer(2)
      .flatMap(messages -> Flux.fromStream(messages.stream()
        .map(ReceiverRecord::value)));
}

Here, we buffer up to two records before emitting them as a batch. By using buffer(2), it groups messages and processes them together, reducing the overhead of individual processing.

5. Error Handling Strategies

In reactive Kafka consumers, an error in the pipeline acts as a terminal signal. This causes the consumer to shut down, which leaves the service instance to run without consuming events. Reactor Kafka provides various strategies to address this, like a retry mechanism using the retryWhen operator. This catches failures, re-subscribes the upstream publisher, and recreates the Kafka consumer.

Another common issue with Kafka consumers is deserialization errors, which occur when the consumer fails to deserialize a message due to an unexpected format. To handle so-called errors, we can use the ErrorHandlingDeserializer provided by Spring Kafka.

5.1. Retry Strategy

A retry strategy is essential when we want to retry a failed operation. This strategy ensures continuous retries with a fixed delay (e.g., five seconds) until the consumer either successfully reconnects or meets a predefined exit condition.

Let’s implement a retry strategy for our consumer so it can automatically retry message processing when an error occurs:

public Flux<String> consumeWithRetryWithBackOff(AtomicInteger attempts) {
    return reactiveKafkaConsumerTemplate.receive()
      .flatMap(msg -> attempts.incrementAndGet() < 3 ? 
        Flux.error(new RuntimeException("Failure")) : Flux.just(msg))
      .retryWhen(Retry.fixedDelay(3, Duration.ofSeconds(1)))
      .map(ReceiverRecord::value);
}

In this example, Retry.backoff(3, Duration.ofSeconds(1)) specifies that the system attempts retries up to 3 times with a backoff of 1 second.

5.2. Handling Serialization Errors With ErrorHandlingDeserializer

When consuming messages from Kafka, we’ll encounter deserialization errors when the message format doesn’t match the expected schema. To handle this, we can use Spring Kafka’s ErrorHandlingDeserializer. This  prevents the consumer from failing by capturing deserialization errors. Then it adds the error details as headers to the ReceiverRecord, instead of discarding the message or throwing an exception:

private Map<String, Object> errorHandlingConsumerConfig(){
    Map<String, Object> config = new HashMap<>();
    config.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, ErrorHandlingDeserializer.class);
    config.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, ErrorHandlingDeserializer.class);
    config.put(ErrorHandlingDeserializer.KEY_DESERIALIZER_CLASS, StringDeserializer.class);
    config.put(ErrorHandlingDeserializer.VALUE_DESERIALIZER_CLASS, StringDeserializer.class);
    return config;
}

6. Conclusion

In this article, we explored how to create Kafka consumers using Reactor Kafka, focusing on error handling, retries, and backpressure management. These techniques enable our Kafka consumers to remain fault-tolerant and efficient, even in failure scenarios.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

Partner – Microsoft – NPI EA (cat = Baeldung)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Microsoft – NPI EA (cat = Spring Boot)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Orkes – NPI EA (cat = Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag = Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Partner – MongoDB – NPI EA (tag=MongoDB)
announcement - icon

Traditional keyword-based search methods rely on exact word matches, often leading to irrelevant results depending on the user's phrasing.

By comparison, using a vector store allows us to represent the data as vector embeddings, based on meaningful relationships. We can then compare the meaning of the user’s query to the stored content, and retrieve more relevant, context-aware results.

Explore how to build an intelligent chatbot using MongoDB Atlas, Langchain4j and Spring Boot:

>> Building an AI Chatbot in Java With Langchain4j and MongoDB Atlas

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

eBook Jackson – NPI EA – 3 (cat = Jackson)