eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Regression testing is an important step in the release process, to ensure that new code doesn't break the existing functionality. As the codebase evolves, we want to run these tests frequently to help catch any issues early on.

The best way to ensure these tests run frequently on an automated basis is, of course, to include them in the CI/CD pipeline. This way, the regression tests will execute automatically whenever we commit code to the repository.

In this tutorial, we'll see how to create regression tests using Selenium, and then include them in our pipeline using GitHub Actions:, to be run on the LambdaTest cloud grid:

>> How to Run Selenium Regression Tests With GitHub Actions

Course – LJB – NPI EA (cat = Core Java)
announcement - icon

Code your way through and build up a solid, practical foundation of Java:

>> Learn Java Basics

1. Overview

In this tutorial, we’re going to investigate the System.gc() method located in the java.lang package.

Explicitly calling System.gc() is known for being a bad practice. Let’s try to understand why and if there are any use cases when calling this method might be useful.

2. Garbage Collection

The Java Virtual Machine decides to perform garbage collection when there are indications to do so. Those indications differ from one GC implementation to another. They are based on different heuristics. However, there are a few moments when GC will be executed for sure:

  • Old generation (Tenured space) is full, which triggers major/full GC
  • New generation (Eden + Survivor0 + Survivor1 spaces) is full, which triggers minor GC

The only thing that is independent of the GC implementation is object eligibility to be garbage collected.

Now, we’ll have a look at the System.gc() method itself.

3. System.gc()

An invocation of the method is simple:

System.gc()

The official Oracle documentation states that:

Calling the gc method suggests that the Java Virtual Machine expend effort toward recycling unused objects in order to make the memory they currently occupy available for quick reuse.

There is no guarantee that the actual GC will be triggered.

System.gc() triggers a major GC. Hence, there is a risk of spending some time on the stop-the-world phase, depending on your garbage collector implementation. As a result, we have an unreliable tool with a potentially significant performance penalty.

Existence of explicit garbage collection invocation should be a serious red flag for everyone.

We can prevent System.gc() from doing any work by using the -XX:DisableExplicitGC JVM flag.

3.1. Performance Tuning

It’s worth noting that just before throwing an OutOfMemoryError, the JVM will perform a full GC. Therefore, an explicit call to System.gc() will not save us from failure.

Garbage collectors nowadays are really smart. They have all knowledge about memory usage and other statistics to be able to make proper decisions. Hence, we should trust them.

In case of memory issues, we have a bunch of settings we can change to tune our application — starting from choosing a different garbage collector, through setting desired application time/GC time ratio, and finally, ending with setting fixed sizes for memory segments.

There are also ways to mitigate the effects of Full GC caused by an explicit call. We can use one of the flags:

-XX:+ExplicitGCInvokesConcurrent

or:

-XX:+ExplicitGCInvokesConcurrentAndUnloadsClasses

If we really want our app to work properly, we should solve the real underlying memory problem.

In the next chapter, we’ll see a practical example when explicitly calling System.gc() seems to be useful.

4. Usage Example

4.1. Scenario

Let’s write a test app. We want to find a situation when calling System.gc() might be useful.

Minor garbage collection happens more often than the major one. So, we should probably focus on the latter. A single object is moved to tenured space if it “survived” a few collections and is still reachable from GC roots.

Let’s imagine we have a huge collection of objects that are alive for some time. Then, at some point, we’re clearing the collection of objects. Maybe it’s a good moment to run System.gc()?

4.2. Demo Application

We’ll create a simple console app that will allow us to simulate that scenario:

public class DemoApplication {

    private static final Map<String, String> cache = new HashMap<String, String>();

    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);

        while (scanner.hasNext()) {
            final String next = scanner.next();
            if ("fill".equals(next)) {
                for (int i = 0; i < 1000000; i++) { 
                    cache.put(randomUUID().toString(), randomUUID().toString()); 
                } 
            } else if ("invalidate".equals(next)) {
                cache.clear();
            } else if ("gc".equals(next)) {
                System.gc();
            } else if ("exit".equals(next)) {
                System.exit(0);
            } else {
                System.out.println("unknown");
            }
        }
    }
}

4.3. Running the Demo

Let’s run our application with a few additional flags:

-XX:+PrintGCDetails -Xloggc:gclog.log -Xms100M -Xmx500M -XX:+UseConcMarkSweepGC

The first two flags are needed to log GC information. The next two flags are setting initial heap size and then maximum heap size. We want to keep the heap size low to force GC to be more active. Finally, we’re deciding to use CMS – Concurrent Mark and Sweep garbage collector. It’s time to run our app!

First, let’s try to fill tenured space. Type fill.

We can investigate our gclog.log file to see what happened. We’ll see around 15 collections. The line logged for single collections looks like:

197.057: [GC (Allocation Failure) 197.057: [ParNew: 67498K->40K(75840K), 0.0016945 secs] 
  168754K->101295K(244192K), 0.0017865 secs] [Times: user=0.01 sys=0.00, real=0.00 secs] secs]

As we can see, the memory is filled.

Next, let’s force System.gc() by typing gc. We can see memory usage didn’t change significantly:

238.810: [Full GC (System.gc()) 238.810: [CMS: 101255K->101231K(168352K); 0.2634318 secs] 
  120693K->101231K(244192K), [Metaspace: 32186K->32186K(1079296K)], 0.2635908 secs] 
  [Times: user=0.27 sys=0.00, real=0.26 secs]

After a few more runs, we’ll see that memory size stays at the same level.

Let’s clear the cache by typing invalidate. We should see no more log lines appear in the gclog.log file.

We can try to fill cache a few more times, but no GC is happening. This is a moment when we can outsmart the garbage collector. Now, after forcing GC, we’ll see a line like:

262.124: [Full GC (System.gc()) 262.124: [CMS: 101523K->14122K(169324K); 0.0975656 secs] 
  103369K->14122K(245612K), [Metaspace: 32203K->32203K(1079296K)], 0.0977279 secs]
  [Times: user=0.10 sys=0.00, real=0.10 secs]

We’ve released an impressive amount of memory! But was it really necessary right now? What happened?

According to this example, calling System.gc() might seem tempting when we’re releasing big objects or invalidating caches.

5. Other Usages

There are very few reasons when an explicit call to the System.gc() method might be useful.

One possible reason is cleaning memory after server startup — we’re starting a server or application which does a lot of preparation. After that, there are a lot of objects to be finalized. However, cleaning after such preparation shouldn’t be our responsibility.

Another is memory leak analysis — it’s more a debugging practice than something we would like to keep in the production code. Calling System.gc() and seeing heap space still being high might be an indication of a memory leak.

6. Summary

In this article, we investigated the System.gc() method and when it might seem useful.

We should never rely on it when it comes to the correctness of our app. GC in most cases is smarter than us, and in case of any memory problems, we should consider tuning the virtual machine instead of making such an explicit call.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook Jackson – NPI EA – 3 (cat = Jackson)