eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Regression testing is an important step in the release process, to ensure that new code doesn't break the existing functionality. As the codebase evolves, we want to run these tests frequently to help catch any issues early on.

The best way to ensure these tests run frequently on an automated basis is, of course, to include them in the CI/CD pipeline. This way, the regression tests will execute automatically whenever we commit code to the repository.

In this tutorial, we'll see how to create regression tests using Selenium, and then include them in our pipeline using GitHub Actions:, to be run on the LambdaTest cloud grid:

>> How to Run Selenium Regression Tests With GitHub Actions

Course – LJB – NPI EA (cat = Core Java)
announcement - icon

Code your way through and build up a solid, practical foundation of Java:

>> Learn Java Basics

1. Overview

When we work with Java, we often encounter tasks that require precision and a collaborative effort between elements. Removing characters from a string based on their presence in another string is one such problem.

In this tutorial, we’ll explore various techniques to achieve this task.

2. Introduction to the Problem

As usual, an example can help us understand the problem quickly. Let’s say we have two strings:

String STRING = "a b c d e f g h i j";
String OTHER = "bdfhj";

Our goal is to eliminate characters from the STRING string if they are present in the string OTHERThus, we expect to get this string as the result:

"a  c  e  g  i "

We’ll learn various approaches to solving this problem in this tutorial. Also, we’ll unit test these solutions to verify whether they produce the expected result.

3. Using Nested Loops

We know a string can be easily split into a char array using the standard toCharArray() method. So, a straightforward and classic approach is first converting the two strings to two char arrays. Then, for each character in STRING, we decide whether to remove it or not by checking if it’s present in OTHER.

We can use nested for loops to implement this logic:

String nestedLoopApproach(String theString, String other) {
    StringBuilder sb = new StringBuilder();
    for (char c : theString.toCharArray()) {
        boolean found = false;
        for (char o : other.toCharArray()) {
            if (c == o) {
                found = true;
                break;
            }
        }
        if (!found) {
            sb.append(c);
        }
    }
    return sb.toString();
}

It’s worth noting since Java strings are immutable objects, we use StringBuilder instead of the ‘+’ operator to concatenate strings to gain better performance.

Next, let’s create a test:

String result = nestedLoopApproach(STRING, OTHER);
assertEquals("a  c  e  g  i ", result);

The test passes if we give it a run, so the method does the job.

Since for each character in STRING, we check through the string OTHER, the time complexity of this solution is O(n2).

4. Replacing the Inner Loop With the indexOf() Method

In the nested loops solution, we created the boolean flag found to store if the current character has been found in the OTHER String and then decided if we need to keep or discard this character by checking the found flag.

Java provides the String.indexOf() method that allows us to locate a given character in a string. Further, if the string doesn’t contain the given character, the method returns -1.

So, if we make use of the String.indexOf() method, the inner loop and the found flag aren’t required:

String loopAndIndexOfApproach(String theString, String other) {
    StringBuilder sb = new StringBuilder();
    for (char c : theString.toCharArray()) {
        if (other.indexOf(c) == -1) {
            sb.append(c);
        }
    }
    return sb.toString();
}

As we can see, this method’s code is easier to understand than the nested loops one, and it passes the test as well:

String result = loopAndIndexOfApproach(STRING, OTHER);
assertEquals("a  c  e  g  i ", result);

Although this implementation is compact and easy to read, as the String.indexOf() method internally searches the target character through the string by a loop, its time complexity is still O(n2).

Next, let’s see if we can find a solution with lower time complexity.

5. Using a HashSet

HashSet is a commonly used collection data structure. It stores the elements in an internal HashMap.

Since the hash function’s time complexity is O(1), HashSet‘s contains() method is an O(1) operation.

Therefore, we can first store all characters in the OTHER string in a HashSet and then check each character from STRING in the HashSet:

String hashSetApproach(String theString, String other) {
    StringBuilder sb = new StringBuilder();
    Set<Character> set = new HashSet<>(other.length());
    for (char c : other.toCharArray()) {
        set.add(c);
    }

    for (char i : theString.toCharArray()) {
        if (set.contains(i)) {
            continue;
        }
        sb.append(i);
    }
    return sb.toString();
}

As the code above shows, the implementation is quite straightforward. Now, let’s delve into its performance.

Initially, we iterate through one string to populate the Set object, making it an O(n) operation. Subsequently, for each character in the other string, we utilize the set.contains() method. This results in n times O(1), becoming another O(n) complexity. Therefore, the entire solution comprises two O(n) operations.

However, since the factor of two is a constant, the overall time complexity of the solution remains O(n). This stands out as a significant improvement compared to previous O(n2) solutions, demonstrating a considerably faster execution.

Finally, if we test the hashSetApproach() method, it gives the expected result:

String result = hashSetApproach(STRING, OTHER);
assertEquals("a  c  e  g  i ", result);

6. Conclusion

In this article, we explored three different approaches to removing characters from one string based on their presence in another.

Furthermore, we conducted a performance analysis, explicitly focusing on time complexity. The results revealed that both nested loops and loops utilizing indexOf() exhibit equivalent time complexities, while solutions employing HashSet to be the most efficient.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook Jackson – NPI EA – 3 (cat = Jackson)