Partner – Microsoft – NPI EA (cat = Baeldung)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Microsoft – NPI EA (cat= Spring Boot)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, you can get started over on the documentation page.

And, you can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Orkes – NPI EA (cat=Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag=Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – MongoDB – NPI EA (tag=MongoDB)
announcement - icon

Traditional keyword-based search methods rely on exact word matches, often leading to irrelevant results depending on the user's phrasing.

By comparison, using a vector store allows us to represent the data as vector embeddings, based on meaningful relationships. We can then compare the meaning of the user’s query to the stored content, and retrieve more relevant, context-aware results.

Explore how to build an intelligent chatbot using MongoDB Atlas, Langchain4j and Spring Boot:

>> Building an AI Chatbot in Java With Langchain4j and MongoDB Atlas

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Accessibility testing is a crucial aspect to ensure that your application is usable for everyone and meets accessibility standards that are required in many countries.

By automating these tests, teams can quickly detect issues related to screen reader compatibility, keyboard navigation, color contrast, and other aspects that could pose a barrier to using the software effectively for people with disabilities.

Learn how to automate accessibility testing with Selenium and the LambdaTest cloud-based testing platform that lets developers and testers perform accessibility automation on over 3000+ real environments:

Automated Accessibility Testing With Selenium

eBook – Java Streams – NPI (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Java Concurrency – NPI (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

1. Introduction

Parallel-collectors is a small library that provides a set of Java Stream API collectors that enable parallel collection processing but without the drawbacks of the standard parallel Stream API, which was designed for processing CPU-bound tasks.

2. Maven Dependencies

If we want to start using the library, we need to add a single entry in Maven’s pom.xml file:

<dependency>
    <groupId>com.pivovarit</groupId>
    <artifactId>parallel-collectors</artifactId>
    <version>2.6.0</version>
</dependency>

Or a single line in Gradle’s build file:

compile 'com.pivovarit:parallel-collectors:2.6.0'

The newest version can be found on Maven Central.

3. Parallel Streams Caveats

Parallel Streams were one of Java 8’s highlights, but they turned out to be applicable to heavy CPU processing exclusively.

The reason for this was the fact that Parallel Streams were internally backed by a JVM-wide shared ForkJoinPool, which provided limited parallelism and was used by all Parallel Streams running on a single JVM instance.

For example, imagine we have a list of IDs, and we want to use them to fetch a list of users. Assuming that the operation is expensive and actually worth parallelizing, we may want to use Parallel Streams to achieve our objective:

List<Integer> ids = Arrays.asList(1, 2, 3); 
List<String> results = ids.parallelStream() 
  .map(i -> fetchById(i)) // each operation takes one second
  .collect(Collectors.toList()); 

System.out.println(results); // [user-1, user-2, user-3]

And indeed, we can see that there’s a noticeable speedup. But it becomes problematic if we start running multiple parallel blocking operations… in parallel. This might quickly saturate the pool and result in potentially huge latencies. That’s why it’s important to build bulkheads by creating separate thread pools – to prevent unrelated tasks from influencing each other’s execution.

To provide a custom ForkJoinPool instance, we could leverage the trick described here, but this approach relied on an undocumented hack and was faulty until JDK10. We can read more in the issue itself – [JDK8190974].

4. Parallel Collectors in Action

Parallel Collectors, as the name suggests, are just standard Stream API Collectors that allow performing additional operations in parallel at the collect() phase.

The ParallelCollectors class (which mirrors the standard Collectors class) is a facade providing access to the whole functionality of the library.

If we wanted to redo the above example, we could simply write:

ExecutorService executor = Executors.newFixedThreadPool(10);

List<Integer> ids = Arrays.asList(1, 2, 3);

CompletableFuture<List<String>> results = ids.stream()
  .collect(ParallelCollectors.parallel(i -> fetchById(i), toList(), executor, 4));

System.out.println(results.join()); // [user-1, user-2, user-3]

The result is the same. However, we were able to provide our custom thread pool and specify our custom parallelism level, and the result arrived wrapped in a CompletableFuture instance without blocking the current thread. 

Standard Parallel Streams, on the other hand, couldn’t achieve any of those.

4.1. Collect in Parallel Using Standard Collectors

As intuitive as it gets, if we want to process a Stream in parallel and collect results, we can simply use ParallelCollectors.parallel and provide a desired Collector, just like with standard Stream API:

List ids = Arrays.asList(1, 2, 3);

CompletableFuture<List> results = ids.stream()
  .collect(parallel(i -> fetchById(i), toList(), executor, 4));

assertThat(results.join()).containsExactly("user-1", "user-2", "user-3");

4.2. Collect in Parallel to Stream

If previously mentioned API methods aren’t flexible enough, we can always collect all items into a Stream instance, and then process it just like any other Stream instance inside a CompletableFuture:

List ids = Arrays.asList(1, 2, 3);

CompletableFuture<Stream> results = ids.stream()
  .collect(parallel(i -> fetchById(i), executor, 4));

assertThat(results.join()).containsExactly("user-1", "user-2", "user-3");

4.3. ParallelCollectors.parallelToStream()

The above examples focused on use cases where it was desired to receive a result wrapped in a CompletableFuture, but if we just want to block the calling thread and process results in completion order, we can go for parallelToStream():

List ids = Arrays.asList(1, 2, 3);

Stream result = ids.stream()
  .collect(parallelToStream(i -> fetchByIdWithRandomDelay(i), executor, 4));

assertThat(result).contains("user-1", "user-2", "user-3");

In this case, we can expect the collector to return different results each time since we introduced a random processing delay. Hence, we included the contains() assertions in our test.

4.4. ParallelCollectors.parallelToOrderedStream()

If we want to ensure that elements are processed in the original order, we can leverage parallelToOrderedStream():

List ids = Arrays.asList(1, 2, 3);

Stream result = ids.stream()
  .collect(parallelToOrderedStream(ParallelCollectorsUnitTest::fetchByIdWithRandomDelay, executor, 4));

assertThat(result).containsExactly("user-1", "user-2", "user-3");

In this case, the collector will always maintain the order but might be slower than the above.

5. Limitations

At the point of writing, parallel-collectors don’t work with infinite streams even if short-circuiting operations are used – it’s a design limitation imposed by Stream API internals. Simply put, Streams treat collectors as non-short-circuiting operations, so the stream needs to process all upstream elements before getting terminated.

The other limitation is that short-circuiting operations don’t interrupt the remaining tasks after short-circuiting – this is one of the limitations of CompletableFuture that doesn’t propagate interruptions to executing threads.

6. Conclusion

We saw how the parallel-collectors library allows us to perform parallel processing by using custom Java Stream API Collectors and CompletableFutures to utilize custom thread pools, parallelism, and the non-blocking style of CompletableFutures.

As always, code snippets are available over on GitHub.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

Partner – Microsoft – NPI EA (cat = Baeldung)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Microsoft – NPI EA (cat = Spring Boot)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Orkes – NPI EA (cat = Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag = Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Partner – MongoDB – NPI EA (tag=MongoDB)
announcement - icon

Traditional keyword-based search methods rely on exact word matches, often leading to irrelevant results depending on the user's phrasing.

By comparison, using a vector store allows us to represent the data as vector embeddings, based on meaningful relationships. We can then compare the meaning of the user’s query to the stored content, and retrieve more relevant, context-aware results.

Explore how to build an intelligent chatbot using MongoDB Atlas, Langchain4j and Spring Boot:

>> Building an AI Chatbot in Java With Langchain4j and MongoDB Atlas

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

eBook – Java Streams – NPI (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Java Concurrency – NPI (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook Jackson – NPI EA – 3 (cat = Jackson)