eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Regression testing is an important step in the release process, to ensure that new code doesn't break the existing functionality. As the codebase evolves, we want to run these tests frequently to help catch any issues early on.

The best way to ensure these tests run frequently on an automated basis is, of course, to include them in the CI/CD pipeline. This way, the regression tests will execute automatically whenever we commit code to the repository.

In this tutorial, we'll see how to create regression tests using Selenium, and then include them in our pipeline using GitHub Actions:, to be run on the LambdaTest cloud grid:

>> How to Run Selenium Regression Tests With GitHub Actions

Course – LJB – NPI EA (cat = Core Java)
announcement - icon

Code your way through and build up a solid, practical foundation of Java:

>> Learn Java Basics

1. Overview

In this article, we’ll see the significance of the load factor in Java’s HashMap and how it affects the map’s performance.

2. What Is HashMap?

The HashMap class belongs to the Java Collection framework and provides a basic implementation of the Map interface. We can use it when we want to store data in terms of key-value pairs. These key-value pairs are called map entries and are represented by the Map.Entry class.

3. HashMap Internals

Before discussing load factor, let’s review a few terms:

    • hashing
    • capacity
    • threshold
    • rehashing
    • collision

HashMap works on the principle of hashing — an algorithm to map object data to some representative integer value. The hashing function is applied to the key object to calculate the index of the bucket in order to store and retrieve any key-value pair.

Capacity is the number of buckets in the HashMap. The initial capacity is the capacity at the time the Map is created. Finally, the default initial capacity of the HashMap is 16.

As the number of elements in the HashMap increases, the capacity is expanded. The load factor is the measure that decides when to increase the capacity of the Map. The default load factor is 75% of the capacity.

The threshold of a HashMap is approximately the product of current capacity and load factor. Rehashing is the process of re-calculating the hash code of already stored entries. Simply put, when the number of entries in the hash table exceeds the threshold, the Map is rehashed so that it has approximately twice the number of buckets as before.

A collision occurs when a hash function returns the same bucket location for two different keys.

Let’s create our HashMap:

Map<String, String> mapWithDefaultParams = new HashMap<>();
mapWithDefaultParams.put("1", "one");
mapWithDefaultParams.put("2", "two");
mapWithDefaultParams.put("3", "three");
mapWithDefaultParams.put("4", "four");

Here is the structure of our Map:

HashMapwithDefaultParams

As we see, our HashMap was created with the default initial capacity (16) and the default load factor (0.75). Also, the threshold is 16 * 0.75 = 12, which means that it will increase the capacity from 16 to 32 after the 12th entry (key-value-pair) is added.

4. Custom Initial Capacity and Load Factor

In the previous section, we created our HashMap with a default constructor. In the following sections, we’ll see how to create a HashMap passing the initial capacity and load factor to the constructor.

4.1. With Initial Capacity

First, let’s create a Map with the initial capacity:

Map<String, String> mapWithInitialCapacity = new HashMap<>(5);

It will create an empty Map with the initial capacity (5) and the default load factor (0.75).

4.2. With Initial Capacity and Load Factor

Similarly, we can create our Map using both initial capacity and load factor:

Map<String, String> mapWithInitialCapacityAndLF = new HashMap<>(5, 0.5f);

Here, it will create an empty Map with an initial capacity of 5 and a load factor of 0.5.

5. Performance

Although we have the flexibility to choose the initial capacity and the load factor, we need to pick them wisely. Both of them affect the performance of the Map. Let’s dig in into how these parameters are related to performance.

5.1. Complexity

As we know, HashMap internally uses hash code as a base for storing key-value pairs. If the hashCode() method is well-written, HashMap will distribute the items across all the buckets. Therefore, HashMap stores and retrieves entries in constant time O(1).

However, the problem arises when the number of items is increased and the bucket size is fixed. It will have more items in each bucket and will disturb time complexity.

The solution is that we can increase the number of buckets when the number of items is increased. We can then redistribute the items across all the buckets. In this way, we’ll be able to keep a constant number of items in each bucket and maintain the time complexity of O(1).

Here, the load factor helps us to decide when to increase the number of buckets. With a lower load factor, there will be more free buckets and, hence, fewer chances of a collision. This will help us to achieve better performance for our Map. Hence, we need to keep the load factor low to achieve low time complexity.

A HashMap typically has a space complexity of O(n), where n is the number of entries. A higher value of load factor decreases the space overhead but increases the lookup cost.

5.2. Rehashing

When the number of items in the Map crosses the threshold limit, the capacity of the Map is doubled. As discussed earlier, when capacity is increased, we need to equally distribute all the entries (including existing entries and new entries) across all buckets. Here, we need rehashing. That is, for each existing key-value pair, calculate the hash code again with increased capacity as a parameter.

Basically, when the load factor increases, the complexity increases. Rehashing is done to maintain a low load factor and low complexity for all the operations.

Let’s initialize our Map:

Map<String, String> mapWithInitialCapacityAndLF = new HashMap<>(5,0.75f);
mapWithInitialCapacityAndLF.put("1", "one");
mapWithInitialCapacityAndLF.put("2", "two");
mapWithInitialCapacityAndLF.put("3", "three");
mapWithInitialCapacityAndLF.put("4", "four");
mapWithInitialCapacityAndLF.put("5", "five");

And let’s take a look at the structure of the Map:

HashMap before

Now, let’s add more entries to our Map:

mapWithInitialCapacityAndLF.put("6", "Six");
mapWithInitialCapacityAndLF.put("7", "Seven");
//.. more entries
mapWithInitialCapacityAndLF.put("15", "fifteen");

And let’s observe our Map structure again:

HashMap after

Although rehashing helps to keep low complexity, it’s an expensive process. If we need to store a huge amount of data, we should create our HashMap with sufficient capacity. This is more efficient than automatic rehashing.

5.3. Collision

Collisions may occur due to a bad hash code algorithm and often slow down the performance of the Map.

Prior to Java 8, HashMap in Java handles collision by using LinkedList to store map entries. If a key ends up in the same bucket where another entry already exists, it’s added at the head of the LinkedList. In the worst case, this will increase complexity to O(n).

To avoid this issue, Java 8 and later versions use a balanced tree (also called a red-black tree) instead of a LinkedList to store collided entries. This improves the worst-case performance of HashMap from O(n) to O(log n).

HashMap initially uses the LinkedList. Then when the number of entries crosses a certain threshold, it will replace a LinkedList with a balanced binary tree. The TREEIFY_THRESHOLD constant decides this threshold value. Currently, this value is 8, which means if there are more than 8 elements in the same bucket, Map will use a tree to hold them.

6. Conclusion

In this article, we discussed one of the most popular data structures: HashMap. We also saw how the load factor together with capacity affects its performance.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook Jackson – NPI EA – 3 (cat = Jackson)