Course – LS – All

Get started with Spring and Spring Boot, through the Learn Spring course:

>> CHECK OUT THE COURSE

1. Overview

In this tutorial, we’ll take a look at different ways to convert a byte array to a hexadecimal String, and vice versa.

We’ll also understand the conversion mechanism and write our implementation to achieve this.

2. Converting Between Byte and Hexadecimal

First of all, let’s take a look at the conversion logic between byte and hexadecimal numbers.

2.1. Byte to Hexadecimal

The bytes are 8 bit signed integers in Java. Therefore, we need to convert each 4-bit segment to hex separately and concatenate them. Consequently, we’ll get two hexadecimal characters after conversion.

For instance, we can write 45 as 0010 1101 in binary, and the hexadecimal equivalent will be “2d”:

0010 = 2 (base 10) = 2 (base 16)
1101 = 13 (base 10) = d (base 16)

Therefore: 45 = 0010 1101 = 0x2d

Let’s implement this simple logic in Java:

public String byteToHex(byte num) {
    char[] hexDigits = new char[2];
    hexDigits[0] = Character.forDigit((num >> 4) & 0xF, 16);
    hexDigits[1] = Character.forDigit((num & 0xF), 16);
    return new String(hexDigits);
}

Now, let’s understand the above code by analyzing each operation. First of all, we created a char array of length 2 to store the output:

char[] hexDigits = new char[2];

Next, we isolated higher order bits by right shifting 4 bits. And then, we applied a mask to isolate lower order 4 bits. Masking is required because negative numbers are internally represented as two’s complement of the positive number:

hexDigits[0] = Character.forDigit((num >> 4) & 0xF, 16);

Then we convert the remaining 4 bits to hexadecimal:

hexDigits[1] = Character.forDigit((num & 0xF), 16);

Finally, we create a String object from the char array. And then, returned this object as converted hexadecimal array.

Now, let us understand how this will work for a negative byte -4:

hexDigits[0]:
1111 1100 >> 4 = 1111 1111 1111 1111 1111 1111 1111 1111
1111 1111 1111 1111 1111 1111 1111 1111 & 0xF = 0000 0000 0000 0000 0000 0000 0000 1111 = 0xf

hexDigits[1]:
1111 1100 & 0xF = 0000 1100 = 0xc

Therefore: -4 (base 10) = 1111 1100 (base 2) = fc (base 16)

It’s also worth noting that the Character.forDigit() method always returns lowercase characters.

2.2. Hexadecimal to Byte

Now, let’s convert a hexadecimal digit to byte. As we know, a byte contains 8 bits. Therefore, we need two hexadecimal digits to create one byte.

First of all, we’ll convert each hexadecimal digit into binary equivalent separately.

And then, we need to concatenate the two four bit-segments to get the byte equivalent:

Hexadecimal: 2d
2 = 0010 (base 2)
d = 1101 (base 2)

Therefore: 2d = 0010 1101 (base 2) = 45

Now, let’s write the operation in Java:

public byte hexToByte(String hexString) {
    int firstDigit = toDigit(hexString.charAt(0));
    int secondDigit = toDigit(hexString.charAt(1));
    return (byte) ((firstDigit << 4) + secondDigit);
}

private int toDigit(char hexChar) {
    int digit = Character.digit(hexChar, 16);
    if(digit == -1) {
        throw new IllegalArgumentException(
          "Invalid Hexadecimal Character: "+ hexChar);
    }
    return digit;
}

Let’s understand this, one operation at a time.

First of all, we converted hexadecimal characters into integers:

int firstDigit = toDigit(hexString.charAt(0));
int secondDigit = toDigit(hexString.charAt(1));

Then we left shifted most significant digit by 4 bits. Consequently, the binary representation has zeros at four least significant bits.

Then, we added the least significant digit to it:

return (byte) ((firstDigit << 4) + secondDigit);

Now, let’s examine the toDigit() method closely. We are using the Character.digit() method for conversion. If the character value passed to this method is not a valid digit in the specified radix, -1 is returned.

We’re validating the return value and throwing an exception if an invalid value was passed.

3. Converting Between Byte Arrays and Hexadecimal Strings

At this point, we know how to convert a byte to the hexadecimal, and vice versa. Let’s scale this algorithm and convert byte array to/from hexadecimal String.

3.1. Byte Array to Hexadecimal String

We need to loop through the array and generate hexadecimal pair for each byte:

public String encodeHexString(byte[] byteArray) {
    StringBuffer hexStringBuffer = new StringBuffer();
    for (int i = 0; i < byteArray.length; i++) {
        hexStringBuffer.append(byteToHex(byteArray[i]));
    }
    return hexStringBuffer.toString();
}

As we already know, the output will always be in lowercase.

3.2. Hexadecimal String to Byte Array

First of all, we need to check if the length of the hexadecimal String is an even number. This is because a hexadecimal String with odd length will result in incorrect byte representation.

Now, we’ll iterate through the array and convert each hexadecimal pair to a byte:

public byte[] decodeHexString(String hexString) {
    if (hexString.length() % 2 == 1) {
        throw new IllegalArgumentException(
          "Invalid hexadecimal String supplied.");
    }
    
    byte[] bytes = new byte[hexString.length() / 2];
    for (int i = 0; i < hexString.length(); i += 2) {
        bytes[i / 2] = hexToByte(hexString.substring(i, i + 2));
    }
    return bytes;
}

4. Using the BigInteger Class

We can create an object of type BigInteger by passing a signum and byte array.

Now, we can generate the hexadecimal String with the help of static method format defined in String class:

public String encodeUsingBigIntegerStringFormat(byte[] bytes) {
    BigInteger bigInteger = new BigInteger(1, bytes);
    return String.format(
      "%0" + (bytes.length << 1) + "x", bigInteger);
}

The format provided will generate a zero-padded lowercase hexadecimal String. We can also generate an uppercase string by replacing “x” with “X”.

Alternatively, we could’ve used the toString() method from BigInteger. The subtle difference of using the toString() method is that the output isn’t padded with leading zeros:

public String encodeUsingBigIntegerToString(byte[] bytes) {
    BigInteger bigInteger = new BigInteger(1, bytes);
    return bigInteger.toString(16);
}

Now, let’s take a look at hexadecimal String to byte Array conversion:

public byte[] decodeUsingBigInteger(String hexString) {
    byte[] byteArray = new BigInteger(hexString, 16)
      .toByteArray();
    if (byteArray[0] == 0) {
        byte[] output = new byte[byteArray.length - 1];
        System.arraycopy(
          byteArray, 1, output, 
          0, output.length);
        return output;
    }
    return byteArray;
}

The toByteArray() method produces an additional sign bit. We have written specific code for handling this additional bit.

Hence, we should be aware of these details before using the BigInteger class for the conversion.

5. Using the DataTypeConverter Class

The DataTypeConverter class is supplied with JAXB library. This is part of the standard library until Java 8. Starting from Java 9, we need to add java.xml.bind module to the runtime explicitly.

Let’s take a look at implementation using the DataTypeConverter class:

public String encodeUsingDataTypeConverter(byte[] bytes) {
    return DatatypeConverter.printHexBinary(bytes);
}

public byte[] decodeUsingDataTypeConverter(String hexString) {
    return DatatypeConverter.parseHexBinary(hexString);
}

As displayed above, it is very convenient to use DataTypeConverter class. The output of the printHexBinary() method is always in uppercase. This class supplies a set of print and parse methods for data type conversion.

Before choosing this approach, we need to make sure the class will be available at runtime.

6. Using Apache’s Commons-Codec Library

We can use the Hex class supplied with the Apache commons-codec library:

public String encodeUsingApacheCommons(byte[] bytes) 
  throws DecoderException {
    return Hex.encodeHexString(bytes);
}

public byte[] decodeUsingApacheCommons(String hexString) 
  throws DecoderException {
    return Hex.decodeHex(hexString);
}

The output of encodeHexString is always in lowercase.

7. Using Google’s Guava Library

Let’s take a look at how BaseEncoding class can be used for encoding and decoding byte array to the hexadecimal String:

public String encodeUsingGuava(byte[] bytes) {
    return BaseEncoding.base16().encode(bytes);
}

public byte[] decodeUsingGuava(String hexString) {
    return BaseEncoding.base16()
      .decode(hexString.toUpperCase());
}

The BaseEncoding encodes and decodes using uppercase characters by default. If we need to use lowercase characters, a new encoding instance should be created using static method lowercase.

8. Using Java 17 HexFormat

In addition to the methods discussed earlier for converting between byte arrays and hexadecimal strings, Java 17 introduced a convenient alternative through the java.util.HexFormat class. HexFormat provides a standardized way to perform hexadecimal encoding and decoding operations, offering a more robust and concise solution compared to custom implementations.

Let’s explore how to use HexFormat for converting between byte arrays and hexadecimal strings.

8.1. Byte Array to Hexadecimal String

To convert a byte array to a hexadecimal string using HexFormat, we can simply use the HexFormat.of().formaHext() method:

public String encodeUsingHexFormat(byte[] bytes) {
    HexFormat hexFormat = HexFormat.of();
    return hexFormat.formatHex(bytes);
}

8.2. Hexadecimal String to Byte Array

Similarly, to convert a hexadecimal string to a byte array, we can use the HexFormat.of().parseHex() method:

public byte[] decodeUsingHexFormat(String hexString) {
    HexFormat hexFormat = HexFormat.of();
    return hexFormat.parseHex(hexString);
}

9. Conclusion

In this article, we learned the conversion algorithm between byte array to hexadecimal String. We also discussed various methods to encode byte array to hex string and vice versa.

It isn’t advised to add a library to use a couple of utility methods only. Therefore, if we aren’t using the external libraries already, we should use the algorithm discussed. The DataTypeConverter class is another way to encode/decode between various data types.

Finally, the complete source code of this tutorial is available on GitHub.

Course – LS – All

Get started with Spring and Spring Boot, through the Learn Spring course:

>> CHECK OUT THE COURSE
res – REST with Spring (eBook) (everywhere)
Comments are open for 30 days after publishing a post. For any issues past this date, use the Contact form on the site.