eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Regression testing is an important step in the release process, to ensure that new code doesn't break the existing functionality. As the codebase evolves, we want to run these tests frequently to help catch any issues early on.

The best way to ensure these tests run frequently on an automated basis is, of course, to include them in the CI/CD pipeline. This way, the regression tests will execute automatically whenever we commit code to the repository.

In this tutorial, we'll see how to create regression tests using Selenium, and then include them in our pipeline using GitHub Actions:, to be run on the LambdaTest cloud grid:

>> How to Run Selenium Regression Tests With GitHub Actions

Course – LJB – NPI EA (cat = Core Java)
announcement - icon

Code your way through and build up a solid, practical foundation of Java:

>> Learn Java Basics

1. Overview

When we work with arrays in Java, one common task is rearranging arrays to optimize their structure. One such scenario involves moving zeros to the end of an array.

In this tutorial, we’ll explore different approaches to achieve this task using Java.

2. Introduction to the Problem

Before we dive into the implementation, let’s first understand the requirements of this problem.

Our input is an array of integers. We aim to rearrange the integers so that all zeros are moved to the end of the array. Further, the order of those non-zero elements must be retained.

An example can help us understand the problem quickly. Let’s say we’re given an integer array:

[ 42, 2, 0, 3, 4, 0 ]

After we rearrange its elements, we expect to obtain an array equivalent to the following as the result:

static final int[] EXPECTED = new int[] { 42, 2, 3, 4, 0, 0 };

Next, we’ll cover two approaches to solving the problem. We’ll also briefly discuss their performance characteristics.

3. Using an Additional Array

To tackle the problem, the first idea that comes up might be to use an additional array.

Let’s say we create a new array and call it result. This array is initialized with the same length as the input array, and all its elements are set to zero.

Next, we traverse the input array. Whenever a non-zero number is encountered, we update the corresponding element in the result array accordingly.

Let’s implement this idea:

int[] array = new int[] { 42, 2, 0, 3, 4, 0 };
int[] result = new int[array.length];
int idx = 0;
for (int n : array) {
    if (n != 0) {
        result[idx++] = n;
    }
}
assertArrayEquals(EXPECTED, result);

As we can see, the code is pretty straightforward. Two things are worth mentioning:

In this solution, we walk through the input array only once. Therefore, this approach has linear time complexity: O(n). However, as it duplicates the input array, its space complexity is O(n).

Next, let’s explore how to improve this solution to achieve an in-place arrangement to maintain a constant space complexity of O(1).

4. In-Place Arrangement with Linear Time Complexity

Let’s first revisit the “initializing a new array” approach. We maintained a non-zero-pointer (idx) on the new array so that we know which element in the result array needs to be updated once a non-zero value is detected in the original array.

In fact, we can set the non-zero pointer on the input array. In this way, when we iterate through the input array, we can shift non-zero elements to the front, maintaining their relative order. After completing the iteration, we’ll fill the remaining positions with zeros.

Let’s take our input array as an example to understand how this algorithm works:

Iteration pointer: v
Non-zero-pointer:  ^

v
42, 2, 0, 3, 4, 0
^ (replace 42 with 42)
 
    v
42, 2, 0, 3, 4, 0
    ^ (replace 2 with 2)
 
       v 
42, 2, 0, 3, 4, 0
    ^
 
          v 
42, 2, 3, 3, 4, 0
       ^ (replace 0 with 3)
 
             v
42, 2, 3, 4, 4, 0
          ^ (replace 3 with 4)
 
                v
42, 2, 3, 4, 4, 0
          ^
 
The final step: Fill 0s to the remaining positions:
                v
42, 2, 3, 4, 0, 0
                ^

Next, let’s implement this logic:

int[] array = new int[] { 42, 2, 0, 3, 4, 0 };
int idx = 0;
for (int n : array) {
    if (n != 0) {
        array[idx++] = n;
    }
}
while (idx < array.length) {
    array[idx++] = 0;
}
assertArrayEquals(EXPECTED, array);

As we can see, no additional array is introduced in the above code. The non-zero-pointer idx keeps track of the position where non-zero elements should be placed. During the iteration, if the current element is non-zero, we move it to the front and increment the pointer. After completing the iteration, we fill the remaining positions with zeros using a while loop.

This approach performs an in-place rearrangement. That is to say, no extra space is required. Therefore, its space complexity is O(1).

In the worst-case scenario where all elements in the input array are zeros, the downside is that the idx pointer remains stationary after the iteration. Consequently, the subsequent while loop will traverse the entire array once more. Despite this, since the iteration is executed a constant number of times, the overall time complexity remains unaffected at O(n).

5. Conclusion

In this article, we explored two methods for relocating zeros to the end of an integer array. Additionally, we discussed their performance in terms of time and space complexities.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook Jackson – NPI EA – 3 (cat = Jackson)