eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

Course – LJB – NPI EA (cat = Core Java)
announcement - icon

Code your way through and build up a solid, practical foundation of Java:

>> Learn Java Basics

Partner – LambdaTest – NPI EA (cat= Testing)
announcement - icon

Distributed systems often come with complex challenges such as service-to-service communication, state management, asynchronous messaging, security, and more.

Dapr (Distributed Application Runtime) provides a set of APIs and building blocks to address these challenges, abstracting away infrastructure so we can focus on business logic.

In this tutorial, we'll focus on Dapr's pub/sub API for message brokering. Using its Spring Boot integration, we'll simplify the creation of a loosely coupled, portable, and easily testable pub/sub messaging system:

>> Flexible Pub/Sub Messaging With Spring Boot and Dapr

1. Overview

Elasticsearch is a search and analytics engine suitable for scenarios requiring flexible filtering. Sometimes, we need to retrieve the requested data and its aggregated information. In this tutorial, we’ll explore how we can do this.

2. Elasticsearch Search With Aggregation

Let’s begin by exploring Elasticsearch’s aggregation functionality.

Once we have an Elasticsearch instance running on localhost, let’s create an index named store-items with a few documents in it:

POST http://localhost:9200/store-items/_doc
{
    "type": "Multimedia",
    "name": "PC Monitor",
    "price": 1000
}
...
POST http://localhost:9200/store-items/_doc
{
    "type": "Pets",
    "name": "Dog Toy",
    "price": 10
}

Now, let’s query it without applying any filters:

GET http://localhost:9200/store-items/_search

Now let’s take a look at the response:

{
...
    "hits": {
        "total": {
            "value": 5,
            "relation": "eq"
        },
        "max_score": 1.0,
        "hits": [
            {
                "_index": "store-items",
                "_type": "_doc",
                "_id": "J49VVI8B6ADL84Kpbm8A",
                "_score": 1.0,
                "_source": {
                    "_class": "com.baeldung.model.StoreItem",
                    "type": "Multimedia",
                    "name": "PC Monitor",
                    "price": 1000
                }
            },
            {
                "_index": "store-items",
                "_type": "_doc",
                "_id": "KI9VVI8B6ADL84Kpbm8A",
                "_score": 1.0,
                "_source": {
                    "type": "Pets",
                    "name": "Dog Toy",
                    "price": 10
                }
            },
 ...
        ]
    }
}

We have a few documents related to store items in the response. Each document corresponds to a specific type of store item.

Next, let’s say we want to know how many items we have for each type. Let’s add the aggregation section to the request body and search the index again:

GET http://localhost:9200/store-items/_search
{
    "aggs": {
        "type_aggregation": {
            "terms": {
                "field": "type"
            }
        }
    }
}

We’ve added the aggregation named type_aggregation that uses the terms aggregation.

As we can see in the response, there is a new aggregations section where we can find information about the number of documents for each type:

{
...
    "aggregations": {
        "type_aggregation": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
                {
                    "key": "Multimedia",
                    "doc_count": 2
                },
                {
                    "key": "Pets",
                    "doc_count": 2
                },
                {
                    "key": "Home tech",
                    "doc_count": 1
                }
            ]
        }
    }
}

3. Spring Data Elasticsearch  Search With Aggregation

Let’s implement the functionality from the previous section using Spring Data Elasticsearch. Let’s begin by adding the dependency:

<dependency>
    <groupId>org.springframework.data</groupId>
    <artifactId>spring-data-elasticsearch</artifactId>
</dependency>

In the next step, we provide an Elasticsearch configuration class:

@Configuration
@EnableElasticsearchRepositories(basePackages = "com.baeldung.spring.data.es.aggregation.repository")
@ComponentScan(basePackages = "com.baeldung.spring.data.es.aggregation")
public class ElasticSearchConfig {

    @Bean
    public RestClient elasticsearchRestClient() {
        return RestClient.builder(HttpHost.create("localhost:9200"))
          .setHttpClientConfigCallback(httpClientBuilder -> {
              httpClientBuilder.addInterceptorLast((HttpResponseInterceptor) (response, context) ->
                  response.addHeader("X-Elastic-Product", "Elasticsearch"));
              return httpClientBuilder;
            })
          .build();
    }

    @Bean
    public ElasticsearchClient elasticsearchClient(RestClient restClient) {
        return ElasticsearchClients.createImperative(restClient);
    }

    @Bean(name = { "elasticsearchOperations", "elasticsearchTemplate" })
    public ElasticsearchOperations elasticsearchOperations(
        ElasticsearchClient elasticsearchClient) {

        ElasticsearchTemplate template = new ElasticsearchTemplate(elasticsearchClient);
        template.setRefreshPolicy(null);

        return template;
    }
}

Here we’ve specified a low-level Elasticsearch REST client and its wrapper bean implementing the ElasticsearchOperations interface. Now, let’s create a StoreItem entity:

@Document(indexName = "store-items")
public class StoreItem {
    @Id
    private String id;

    @Field(type = Keyword)
    private String type;
    @Field(type = Keyword)
    private String name;

    @Field(type = Keyword)
    private Long price;

    //getters and setters
}

We’ve utilized the same store-items index as in the last section. Since we cannot use the built-in abilities of the Spring Data repository to retrieve aggregations, we’ll need to create a repository extension. Let’s create an extension interface:

public interface StoreItemRepositoryExtension {
    SearchPage<StoreItem> findAllWithAggregations(Pageable pageable);
}

Here we have the findAllWithAggregations() method, which consumes a Pageable interface implementation and returns a SearchPage with our items. Next, let’s create an implementation of this interface:

@Component
public class StoreItemRepositoryExtensionImpl implements StoreItemRepositoryExtension {

    @Autowired
    private ElasticsearchOperations elasticsearchOperations;

    @Override
    public SearchPage<StoreItem> findAllWithAggregations(Pageable pageable) {
        Query query = NativeQuery.builder()
          .withAggregation("type_aggregation",
            Aggregation.of(b -> b.terms(t -> t.field("type"))))
          .build();
        SearchHits<StoreItem> response = elasticsearchOperations.search(query, StoreItem.class);
        return SearchHitSupport.searchPageFor(response, pageable);
    }
}

We’ve constructed the native query, incorporating the aggregation section. Following the pattern from the previous section, we use type_aggregation as the aggregation name. Then, we utilize the terms aggregation type to calculate the number of documents per specified field in the response.

Finally, let’s create a Spring Data repository where we’ll extend ElasticsearchRepository to support generic Spring Data functionality and StoreItemRepositoryExtension to incorporate our custom method implementation:

@Repository
public interface StoreItemRepository extends ElasticsearchRepository<StoreItem, String>,
  StoreItemRepositoryExtension {
}

After that, let’s create a test for our aggregation functionality:

@ExtendWith(SpringExtension.class)
@ContextConfiguration(classes = ElasticSearchConfig.class)
public class ElasticSearchAggregationManualTest {

    private static final List<StoreItem> EXPECTED_ITEMS = List.of(
      new StoreItem("Multimedia", "PC Monitor", 1000L),
      new StoreItem("Multimedia", "Headphones", 200L), 
      new StoreItem("Home tech", "Barbecue Grill", 2000L), 
      new StoreItem("Pets", "Dog Toy", 10L),
      new StoreItem("Pets", "Cat shampoo", 5L));
...

    @BeforeEach
    public void before() {
        repository.saveAll(EXPECTED_ITEMS);
    }

...
} 

We’ve created a test data set with five items, featuring a few store items for each type. We populate this data in Elasticsearch before our test case starts executing. Moving on, let’s call our findAllWithAggregations() method and see what it returns:

@Test
void givenFullTitle_whenRunMatchQuery_thenDocIsFound() {
    SearchHits<StoreItem> searchHits = repository.findAllWithAggregations(Pageable.ofSize(2))
      .getSearchHits();
    List<StoreItem> data = searchHits.getSearchHits()
      .stream()
      .map(SearchHit::getContent)
      .toList();

    Assertions.assertThat(data).containsAll(EXPECTED_ITEMS);

    Map<String, Long> aggregatedData = ((ElasticsearchAggregations) searchHits
      .getAggregations())
      .get("type_aggregation")
      .aggregation()
      .getAggregate()
      .sterms()
      .buckets()
      .array()
      .stream()
      .collect(Collectors.toMap(bucket -> bucket.key()
        .stringValue(), MultiBucketBase::docCount));

    Assertions.assertThat(aggregatedData).containsExactlyInAnyOrderEntriesOf(
      Map.of("Multimedia", 2L, "Home tech", 1L, "Pets", 2L));
}

As we can see in the response, we’ve retrieved search hits from which we can extract the exact query results. Additionally, we retrieved the aggregation data, which contains all the expected aggregations for our search results.

4. Conclusion

In this article, we’ve explored how to integrate Elasticsearch aggregation functionality into Spring Data repositories. We utilized the terms aggregation to do this. However, there are many other types of aggregations available that we can employ to cover a wide range of aggregation functionality.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook Jackson – NPI EA – 3 (cat = Jackson)