Partner – Microsoft – NPI EA (cat = Baeldung)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Microsoft – NPI EA (cat= Spring Boot)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, you can get started over on the documentation page.

And, you can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Orkes – NPI EA (cat=Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag=Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – MongoDB – NPI EA (tag=MongoDB)
announcement - icon

Traditional keyword-based search methods rely on exact word matches, often leading to irrelevant results depending on the user's phrasing.

By comparison, using a vector store allows us to represent the data as vector embeddings, based on meaningful relationships. We can then compare the meaning of the user’s query to the stored content, and retrieve more relevant, context-aware results.

Explore how to build an intelligent chatbot using MongoDB Atlas, Langchain4j and Spring Boot:

>> Building an AI Chatbot in Java With Langchain4j and MongoDB Atlas

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Accessibility testing is a crucial aspect to ensure that your application is usable for everyone and meets accessibility standards that are required in many countries.

By automating these tests, teams can quickly detect issues related to screen reader compatibility, keyboard navigation, color contrast, and other aspects that could pose a barrier to using the software effectively for people with disabilities.

Learn how to automate accessibility testing with Selenium and the LambdaTest cloud-based testing platform that lets developers and testers perform accessibility automation on over 3000+ real environments:

Automated Accessibility Testing With Selenium

eBook – Java Concurrency – NPI (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

1. Introduction

Core Java provides a basic API for asynchronous computations – Future. CompletableFuture is one of its newest implementations.

Vavr provides its new functional alternative to the Future API. In this article, we’ll discuss the new API and show how to make use of some of its new features.

More articles on Vavr can be found here.

2. Maven Dependency

The Future API is included in the Vavr Maven dependency.

So, let’s add it to our pom.xml:

<dependency>
    <groupId>io.vavr</groupId>
    <artifactId>vavr</artifactId>
    <version>0.9.2</version>
</dependency>

We can find the latest version of the dependency on Maven Central.

3. Vavr’s Future

The Future can be in one of two states:

  • Pending – the computation is ongoing
  • Completed – the computation finished successfully with a result, failed with an exception or was canceled

The main advantage over the core Java Future is that we can easily register callbacks and compose operations in a non-blocking way.

4. Basic Future Operations

4.1. Starting Asynchronous Computations

Now, let’s see how we can start asynchronous computations using Vavr:

String initialValue = "Welcome to ";
Future<String> resultFuture = Future.of(() -> someComputation());

4.2. Retrieving Values from a Future

We can extract values from a Future by simply calling one of the get() or getOrElse() methods:

String result = resultFuture.getOrElse("Failed to get underlying value.");

The difference between get() and getOrElse() is that get() is the simplest solution, while getOrElse() enables us to return a value of any type in case we weren’t able to retrieve the value inside the Future.

It’s recommended to use getOrElse() so we can handle any errors that occur while trying to retrieve the value from a Future. For the sake of simplicity, we’ll just use get() in the next few examples.

Note that the get() method blocks the current thread if it’s necessary to wait for the result.

A different approach is to call the nonblocking getValue() method, which returns an Option<Try<T>> which will be empty as long as computation is pending.

We can then extract the computation result which is inside the Try object:

Option<Try<String>> futureOption = resultFuture.getValue();
Try<String> futureTry = futureOption.get();
String result = futureTry.get();

Sometimes we need to check if the Future contains a value before retrieving values from it.

We can simply do that by using:

resultFuture.isEmpty();

It’s important to note that the method isEmpty() is blocking – it will block the thread until its operation is finished.

4.3. Changing the Default ExecutorService

Futures use an ExecutorService to run their computations asynchronously. The default ExecutorService is Executors.newCachedThreadPool().

We can use another ExecutorService by passing an implementation of our choice:

@Test
public void whenChangeExecutorService_thenCorrect() {
    String result = Future.of(newSingleThreadExecutor(), () -> HELLO)
      .getOrElse(error);
    
    assertThat(result)
      .isEqualTo(HELLO);
}

5. Performing Actions Upon Completion

The API provides the onSuccess() method which performs an action as soon as the Future completes successfully.

Similarly, the method onFailure() is executed upon the failure of the Future.

Let’s see a quick example:

Future<String> resultFuture = Future.of(() -> appendData(initialValue))
  .onSuccess(v -> System.out.println("Successfully Completed - Result: " + v))
  .onFailure(v -> System.out.println("Failed - Result: " + v));

The method onComplete() accepts an action to be run as soon as the Future has completed its execution, whether or not the Future was successful. The method andThen() is similar to onComplete() – it just guarantees the callbacks are executed in a specific order:

Future<String> resultFuture = Future.of(() -> appendData(initialValue))
  .andThen(finalResult -> System.out.println("Completed - 1: " + finalResult))
  .andThen(finalResult -> System.out.println("Completed - 2: " + finalResult));

6. Useful Operations on Futures

6.1. Blocking the Current Thread

The method await() has two cases:

  • if the Future is pending, it blocks the current thread until the Future has completed
  • if the Future is completed, it finishes immediately

Using this method is straightforward:

resultFuture.await();

6.2. Canceling a Computation

We can always cancel the computation:

resultFuture.cancel();

6.3. Retrieving the Underlying ExecutorService

To obtain the ExecutorService that is used by a Future, we can simply call executorService():

resultFuture.executorService();

6.4. Obtaining a Throwable from a Failed Future

We can do that using the getCause() method which returns the Throwable wrapped in an io.vavr.control.Option object.

We can later extract the Throwable from the Option object:

@Test
public void whenDivideByZero_thenGetThrowable2() {
    Future<Integer> resultFuture = Future.of(() -> 10 / 0)
      .await();
    
    assertThat(resultFuture.getCause().get().getMessage())
      .isEqualTo("/ by zero");
}

Additionally, we can convert our instance to a Future holding a Throwable instance using the failed() method:

@Test
public void whenDivideByZero_thenGetThrowable1() {
    Future<Integer> resultFuture = Future.of(() -> 10 / 0);
    
    assertThatThrownBy(resultFuture::get)
      .isInstanceOf(ArithmeticException.class);
}

6.5. isCompleted(), isSuccess(), and isFailure()

These methods are pretty much self-explanatory. They check if a Future completed, whether it completed successfully or with a failure. All of them return boolean values, of course.

We’re going to use these methods with the previous example:

@Test
public void whenDivideByZero_thenCorrect() {
    Future<Integer> resultFuture = Future.of(() -> 10 / 0)
      .await();
    
    assertThat(resultFuture.isCompleted()).isTrue();
    assertThat(resultFuture.isSuccess()).isFalse();
    assertThat(resultFuture.isFailure()).isTrue();
}

6.6. Applying Computations on Top of a Future

The map() method allows us to apply a computation on top of a pending Future:

@Test
public void whenCallMap_thenCorrect() {
    Future<String> futureResult = Future.of(() -> "from Baeldung")
      .map(a -> "Hello " + a)
      .await();
    
    assertThat(futureResult.get())
      .isEqualTo("Hello from Baeldung");
}

If we pass a function that returns a Future to the map() method, we can end up with a nested Future structure. To avoid this, we can leverage the flatMap() method:

@Test
public void whenCallFlatMap_thenCorrect() {
    Future<Object> futureMap = Future.of(() -> 1)
      .flatMap((i) -> Future.of(() -> "Hello: " + i));
         
    assertThat(futureMap.get()).isEqualTo("Hello: 1");
}

6.7. Transforming Futures

The method transformValue() can be used to apply a computation on top of a Future and change the value inside it to another value of the same type or a different type:

@Test
public void whenTransform_thenCorrect() {
    Future<Object> future = Future.of(() -> 5)
      .transformValue(result -> Try.of(() -> HELLO + result.get()));
                
    assertThat(future.get()).isEqualTo(HELLO + 5);
}

6.8. Zipping Futures

The API provides the zip() method which zips Futures together into tuples – a tuple is a collection of several elements that may or may not be related to each other. They can also be of different types. Let’s see a quick example:

@Test
public void whenCallZip_thenCorrect() {
    Future<String> f1 = Future.of(() -> "hello1");
    Future<String> f2 = Future.of(() -> "hello2");
    
    assertThat(f1.zip(f2).get())
      .isEqualTo(Tuple.of("hello1", "hello2"));
}

The point to note here is that the resulting Future will be pending as long as at least one of the base Futures is still pending.

6.9. Conversion Between Futures and CompletableFutures

The API supports integration with java.util.CompletableFuture. So, we can easily convert a Future to a CompletableFuture if we want to perform operations that only the core Java API supports.

Let’s see how we can do that:

@Test
public void whenConvertToCompletableFuture_thenCorrect()
  throws Exception {
 
    CompletableFuture<String> convertedFuture = Future.of(() -> HELLO)
      .toCompletableFuture();
    
    assertThat(convertedFuture.get())
      .isEqualTo(HELLO);
}

We can also convert a CompletableFuture to a Future using the fromCompletableFuture() method.

6.10. Exception Handling

Upon the failure of a Future, we can handle the error in a few ways.

For example, we can make use of the method recover() to return another result, such as an error message:

@Test
public void whenFutureFails_thenGetErrorMessage() {
    Future<String> future = Future.of(() -> "Hello".substring(-1))
      .recover(x -> "fallback value");
    
    assertThat(future.get())
      .isEqualTo("fallback value");
}

Or, we can return the result of another Future computation using recoverWith():

@Test
public void whenFutureFails_thenGetAnotherFuture() {
    Future<String> future = Future.of(() -> "Hello".substring(-1))
      .recoverWith(x -> Future.of(() -> "fallback value"));
    
    assertThat(future.get())
      .isEqualTo("fallback value");
}

The method fallbackTo() is another way to handle errors. It’s called on a Future and accepts another Future as a parameter.

If the first Future is successful, then it returns its result. Otherwise, if the second Future is successful, then it returns its result. If both Futures fail, then the failed() method returns a Future of a Throwable, which holds the error of the first Future:

@Test
public void whenBothFuturesFail_thenGetErrorMessage() {
    Future<String> f1 = Future.of(() -> "Hello".substring(-1));
    Future<String> f2 = Future.of(() -> "Hello".substring(-2));
    
    Future<String> errorMessageFuture = f1.fallbackTo(f2);
    Future<Throwable> errorMessage = errorMessageFuture.failed();
    
    assertThat(
      errorMessage.get().getMessage())
      .isEqualTo("begin -1, end 5, length 5");
}

7. Conclusion

In this article, we’ve seen what a Future is and learned some of its important concepts. We’ve also walked through some of the features of the API using a few practical examples.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

Partner – Microsoft – NPI EA (cat = Baeldung)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Microsoft – NPI EA (cat = Spring Boot)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Orkes – NPI EA (cat = Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag = Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Partner – MongoDB – NPI EA (tag=MongoDB)
announcement - icon

Traditional keyword-based search methods rely on exact word matches, often leading to irrelevant results depending on the user's phrasing.

By comparison, using a vector store allows us to represent the data as vector embeddings, based on meaningful relationships. We can then compare the meaning of the user’s query to the stored content, and retrieve more relevant, context-aware results.

Explore how to build an intelligent chatbot using MongoDB Atlas, Langchain4j and Spring Boot:

>> Building an AI Chatbot in Java With Langchain4j and MongoDB Atlas

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

eBook – Java Concurrency – NPI (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook Jackson – NPI EA – 3 (cat = Jackson)