eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Regression testing is an important step in the release process, to ensure that new code doesn't break the existing functionality. As the codebase evolves, we want to run these tests frequently to help catch any issues early on.

The best way to ensure these tests run frequently on an automated basis is, of course, to include them in the CI/CD pipeline. This way, the regression tests will execute automatically whenever we commit code to the repository.

In this tutorial, we'll see how to create regression tests using Selenium, and then include them in our pipeline using GitHub Actions:, to be run on the LambdaTest cloud grid:

>> How to Run Selenium Regression Tests With GitHub Actions

Course – LJB – NPI EA (cat = Core Java)
announcement - icon

Code your way through and build up a solid, practical foundation of Java:

>> Learn Java Basics

Partner – LambdaTest – NPI (cat= Testing)
announcement - icon

Regression testing is an important step in the release process, to ensure that new code doesn't break the existing functionality. As the codebase evolves, we want to run these tests frequently to help catch any issues early on.

The best way to ensure these tests run frequently on an automated basis is, of course, to include them in the CI/CD pipeline. This way, the regression tests will execute automatically whenever we commit code to the repository.

In this tutorial, we'll see how to create regression tests using Selenium, and then include them in our pipeline using GitHub Actions:, to be run on the LambdaTest cloud grid:

>> How to Run Selenium Regression Tests With GitHub Actions

1. Introduction

In this article, we’ll cover how to execute parallel unit tests using JUnit 5. First, we’ll cover basic configuration and minimal requirements to start using this feature. Next, we’ll show code examples for different situations, and in the end, we’ll talk about the synchronization of shared resources.

Parallel test execution is an experimental feature available as an opt-in since version 5.3.

2. Configuration

First, we need to create a junit-platform.properties file in our src/test/resources folder to enable parallel test execution. We enable the parallelization feature by adding the following line in the mentioned file:

junit.jupiter.execution.parallel.enabled = true

Let’s check our configuration by running a few tests. First, we’ll create the FirstParallelUnitTest class and two tests in it:

public class FirstParallelUnitTest{

    @Test
    public void first() throws Exception{
        System.out.println("FirstParallelUnitTest first() start => " + Thread.currentThread().getName());
        Thread.sleep(500);
        System.out.println("FirstParallelUnitTest first() end => " + Thread.currentThread().getName());
    }

    @Test
    public void second() throws Exception{
        System.out.println("FirstParallelUnitTest second() start => " + Thread.currentThread().getName());
        Thread.sleep(500);
        System.out.println("FirstParallelUnitTest second() end => " + Thread.currentThread().getName());
    }
}

When we run our tests, we get the following output in the console:

FirstParallelUnitTest second() start => ForkJoinPool-1-worker-19
FirstParallelUnitTest second() end => ForkJoinPool-1-worker-19
FirstParallelUnitTest first() start => ForkJoinPool-1-worker-19
FirstParallelUnitTest first() end => ForkJoinPool-1-worker-19

In this output, we can notice two things. First, our tests run sequentially. Second, we use the ForkJoin thread pool. By enabling parallel execution, the JUnit engine starts using the ForkJoin thread pool.

Next, we need to add a configuration to utilize this thread pool. We need to choose a parallelization strategy. JUnit provides two implementations (dynamic and fixed) and a custom option to create our implementation.

Dynamic strategy determines the number of threads  based on the number of processors/cores multiplied by factor parameter (defaults to 1) specified using:

junit.jupiter.execution.parallel.config.dynamic.factor

On the other hand, the fixed strategy relies on a predefined number of threads specified by:

junit.jupiter.execution.parallel.config.fixed.parallelism

To use the custom strategy, we need to create it first by implementing the ParallelExecutionConfigurationStrategy interface.

3. Test Parallelization Within a Class

We already enabled parallel execution and picked a strategy. Now it’s time to execute tests in parallel within the same class. There are two ways to configure this. One is using @Execution(ExecutionMode.CONCURRENT) annotation, and the second is using properties file and line:

junit.jupiter.execution.parallel.mode.default = concurrent

After we choose how to configure this and run our FirstParallelUnitTest class, we can see the following output:

FirstParallelUnitTest second() start => ForkJoinPool-1-worker-5
FirstParallelUnitTest first() start => ForkJoinPool-1-worker-19
FirstParallelUnitTest second() end => ForkJoinPool-1-worker-5
FirstParallelUnitTest first() end => ForkJoinPool-1-worker-19

From the output, we can see that both tests start simultaneously and in two different threads. Note that output can change from one run to another. This is expected when using the ForkJoin thread pool.

There is also an option to run all tests within the FirstParallelUnitTest class in the same thread. In the current scope, using parallelism and the same thread option is not viable so let’s expand our scope and add one more test class in the next section.

4. Test Parallelization Within a Module

Before we introduce a new property, we’ll create SecondParallelUnitTest class that has two methods similar to FirstParallelUnitTest:

public class SecondParallelUnitTest{

    @Test
    public void first() throws Exception{
        System.out.println("SecondParallelUnitTest first() start => " + Thread.currentThread().getName());
        Thread.sleep(500);
        System.out.println("SecondParallelUnitTest first() end => " + Thread.currentThread().getName());
    }

    @Test
    public void second() throws Exception{
        System.out.println("SecondParallelUnitTest second() start => " + Thread.currentThread().getName());
        Thread.sleep(500);
        System.out.println("SecondParallelUnitTest second() end => " + Thread.currentThread().getName());
    }
}

Before we run our tests in the same batch, we need to set property:

junit.jupiter.execution.parallel.mode.classes.default = concurrent

When we run both tests classes, we get the following output:

SecondParallelUnitTest second() start => ForkJoinPool-1-worker-23
FirstParallelUnitTest first() start => ForkJoinPool-1-worker-19
FirstParallelUnitTest second() start => ForkJoinPool-1-worker-9
SecondParallelUnitTest first() start => ForkJoinPool-1-worker-5
FirstParallelUnitTest first() end => ForkJoinPool-1-worker-19
SecondParallelUnitTest first() end => ForkJoinPool-1-worker-5
FirstParallelUnitTest second() end => ForkJoinPool-1-worker-9
SecondParallelUnitTest second() end => ForkJoinPool-1-worker-23

From the output, we can see that all four tests run in parallel in different threads.

Combining two properties we mentioned in this and previous section and their values (same_thread and concurrent), we get four different modes of execution:

  1. (same_thread, same_thread) – all tests run sequentially
  2. (same_thread, concurrent) – tests from one class run sequentially, but multiple classes run in parallel
  3. (concurrent, same_thread) – tests from one class run parallel, but each class run separately
  4. (concurrent, concurrent) – tests run in parallel

5. Synchronization

In ideal situations, all our unit tests are independent and isolated. However, sometimes that’s hard to implement because they depend on shared resources. Then, when running tests in parallel, we need to synchronize over common resources in our tests. JUnit5 provides us with such mechanisms in the form of @ResourceLock annotation.

Similarly, as before, let’s create ParallelResourceLockUnitTest class:

public class ParallelResourceLockUnitTest{
    private List<String> resources;
    @BeforeEach
    void before() {
        resources = new ArrayList<>();
        resources.add("test");
    }
    @AfterEach
    void after() {
        resources.clear();
    }
    @Test
    @ResourceLock(value = "resources")
    public void first() throws Exception {
        System.out.println("ParallelResourceLockUnitTest first() start => " + Thread.currentThread().getName());
        resources.add("first");
        System.out.println(resources);
        Thread.sleep(500);
        System.out.println("ParallelResourceLockUnitTest first() end => " + Thread.currentThread().getName());
    }
    @Test
    @ResourceLock(value = "resources")
    public void second() throws Exception {
        System.out.println("ParallelResourceLockUnitTest second() start => " + Thread.currentThread().getName());
        resources.add("second");
        System.out.println(resources);
        Thread.sleep(500);
        System.out.println("ParallelResourceLockUnitTest second() end => " + Thread.currentThread().getName());
    }
}

@ResourceLock allows us to specify which resource is shared and the type of lock we want to use (default is ResourceAccessMode.READ_WRITE). With the current setup, the JUnit engine will detect that our tests both use a shared resource and will execute them sequentially:

ParallelResourceLockUnitTest second() start => ForkJoinPool-1-worker-5
[test, second]
ParallelResourceLockUnitTest second() end => ForkJoinPool-1-worker-5
ParallelResourceLockUnitTest first() start => ForkJoinPool-1-worker-19
[test, first]
ParallelResourceLockUnitTest first() end => ForkJoinPool-1-worker-19

6. Conclusion

In this article, first, we covered how to configure parallel execution. Next, what are available strategies for parallelism and how to configure a number of threads? After that, we covered how different configurations affect test execution. In the end, we covered the synchronization of shared resources.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook Jackson – NPI EA – 3 (cat = Jackson)