eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Regression testing is an important step in the release process, to ensure that new code doesn't break the existing functionality. As the codebase evolves, we want to run these tests frequently to help catch any issues early on.

The best way to ensure these tests run frequently on an automated basis is, of course, to include them in the CI/CD pipeline. This way, the regression tests will execute automatically whenever we commit code to the repository.

In this tutorial, we'll see how to create regression tests using Selenium, and then include them in our pipeline using GitHub Actions:, to be run on the LambdaTest cloud grid:

>> How to Run Selenium Regression Tests With GitHub Actions

Course – LJB – NPI EA (cat = Core Java)
announcement - icon

Code your way through and build up a solid, practical foundation of Java:

>> Learn Java Basics

1. Overview

HashSet is a collection for storing unique elements.

In this tutorial, we’ll discuss the performance of the removeAll() method in the java.util.HashSet class.

2. HashSet.removeAll()

The removeAll method removes all the elements, that are contained in the collection:

Set<Integer> set = new HashSet<Integer>();
set.add(1);
set.add(2);
set.add(3);
set.add(4);

Collection<Integer> collection = new ArrayList<Integer>();
collection.add(1);
collection.add(3);

set.removeAll(collection);

Integer[] actualElements = new Integer[set.size()];
Integer[] expectedElements = new Integer[] { 2, 4 };
assertArrayEquals(expectedElements, set.toArray(actualElements));

As a result, elements 1 and 3 will be removed from the set.

3. Internal Implementation and Time Complexity

The removeAll() method determines which one is smaller – the set or the collection. This is done by invoking the size() method on the set and the collection.

If the collection has fewer elements than the set, then it iterates over the specified collection with the time complexity O(n). It also checks if the element is present in the set with the time complexity O(1). And if the element is present, it’s being removed from the set using the remove() method of the set, which again has a time complexity of O(1). So the overall time complexity is O(n).

If the set has fewer elements than the collection, then it iterates over this set using O(n). Then it checks if each element is present in the collection by invoking its contains() method. And if such an element is present, then the element is removed from the set. So this depends on the time complexity of the contains() method.

Now in this case, if the collection is an ArrayList, the time complexity of the contains() method is O(m). So overall time complexity to remove all elements present in the ArrayList from the set is O(n * m).

If the collection is again HashSet, the time complexity of the contains() method is O(1). So overall time complexity to remove all elements present in the HashSet from the set is O(n).

4. Performance

To see the performance difference between the above 3 cases, let’s write a simple JMH benchmark test.

For the first case, we’ll initialize the set and collection, where we have more elements in the set than the collection. In the second case, we’ll initialize the set and the collection, where we have more elements in the collection than the set. And in the third case, we’ll initialize 2 sets, where we’ll have 2nd set having more number of elements than the 1st one:

@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(iterations = 5)
public class HashSetBenchmark {

    @State(Scope.Thread)
    public static class MyState {
        private Set employeeSet1 = new HashSet<>();
        private List employeeList1 = new ArrayList<>();
        private Set employeeSet2 = new HashSet<>();
        private List employeeList2 = new ArrayList<>();
        private Set<Employee> employeeSet3 = new HashSet<>();
        private Set<Employee> employeeSet4 = new HashSet<>();

        private long set1Size = 60000;
        private long list1Size = 50000;
        private long set2Size = 50000;
        private long list2Size = 60000;
        private long set3Size = 50000;
        private long set4Size = 60000;

        @Setup(Level.Trial)
        public void setUp() {
            // populating sets
        }
    }
}

After, we add our benchmark tests:

@Benchmark
public boolean given_SizeOfHashsetGreaterThanSizeOfCollection_whenRemoveAllFromHashSet_thenGoodPerformance(MyState state) {
    return state.employeeSet1.removeAll(state.employeeList1);
}

@Benchmark
public boolean given_SizeOfHashsetSmallerThanSizeOfCollection_whenRemoveAllFromHashSet_thenBadPerformance(MyState state) {
    return state.employeeSet2.removeAll(state.employeeList2);
}

@Benchmark
public boolean given_SizeOfHashsetSmallerThanSizeOfAnotherHashSet_whenRemoveAllFromHashSet_thenGoodPerformance(MyState state) {
    return state.employeeSet3.removeAll(state.employeeSet4);
}

And here are the results:

Benchmark                                              Mode  Cnt            Score            Error  Units
HashSetBenchmark.testHashSetSizeGreaterThanCollection  avgt   20      2700457.099 ±     475673.379  ns/op
HashSetBenchmark.testHashSetSmallerThanCollection      avgt   20  31522676649.950 ± 3556834894.168  ns/op
HashSetBenchmark.testHashSetSmallerThanOtherHashset    avgt   20      2672757.784 ±     224505.866  ns/op

We can see the HashSet.removeAll() performs pretty bad when the HashSet has fewer elements than the Collection, which is passed as an argument to the removeAll() method. But when the other collection is again HashSet, then the performance is good.

5. Conclusion

In this article, we saw the performance of removeAll() in HashSet. When the set has fewer elements than the collection, then the performance of removeAll() depends on the time complexity of the contains() method of the collection.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook Jackson – NPI EA – 3 (cat = Jackson)