Partner – Microsoft – NPI EA (cat = Baeldung)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Microsoft – NPI EA (cat= Spring Boot)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, you can get started over on the documentation page.

And, you can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Orkes – NPI EA (cat=Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag=Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – MongoDB – NPI EA (tag=MongoDB)
announcement - icon

Traditional keyword-based search methods rely on exact word matches, often leading to irrelevant results depending on the user's phrasing.

By comparison, using a vector store allows us to represent the data as vector embeddings, based on meaningful relationships. We can then compare the meaning of the user’s query to the stored content, and retrieve more relevant, context-aware results.

Explore how to build an intelligent chatbot using MongoDB Atlas, Langchain4j and Spring Boot:

>> Building an AI Chatbot in Java With Langchain4j and MongoDB Atlas

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Accessibility testing is a crucial aspect to ensure that your application is usable for everyone and meets accessibility standards that are required in many countries.

By automating these tests, teams can quickly detect issues related to screen reader compatibility, keyboard navigation, color contrast, and other aspects that could pose a barrier to using the software effectively for people with disabilities.

Learn how to automate accessibility testing with Selenium and the LambdaTest cloud-based testing platform that lets developers and testers perform accessibility automation on over 3000+ real environments:

Automated Accessibility Testing With Selenium

1. Introduction

In this article, we’ll show several algorithms for searching for a pattern in a large text. We’ll describe each algorithm with provided code and simple mathematical background.

Notice that provided algorithms are not the best way to do a full-text search in more complex applications. To do full-text search properly, we can use Solr or ElasticSearch.

2. Algorithms

We’ll start with a naive text search algorithm which is the most intuitive one and helps to discover other advanced problems associated with that task.

2.1. Helper Methods

Before we start, let’s define simple methods for calculating prime numbers which we use in Rabin Karp algorithm:

public static long getBiggerPrime(int m) {
    BigInteger prime = BigInteger.probablePrime(getNumberOfBits(m) + 1, new Random());
    return prime.longValue();
}
private static int getNumberOfBits(int number) {
    return Integer.SIZE - Integer.numberOfLeadingZeros(number);
}

Name of this algorithm describes it better than any other explanation. It’s the most natural solution:

public static int simpleTextSearch(char[] pattern, char[] text) {
    int patternSize = pattern.length;
    int textSize = text.length;

    int i = 0;

    while ((i + patternSize) <= textSize) {
        int j = 0;
        while (text[i + j] == pattern[j]) {
            j += 1;
            if (j >= patternSize)
                return i;
        }
        i += 1;
    }
    return -1;
}

The idea of this algorithm is straightforward: iterate through the text and if there is a match for the first letter of the pattern, check if all the letters of the pattern match the text.

If m is a number of the letters in the pattern, and n is the number of the letters in the text, time complexity of this algorithms is O(m(n-m + 1)).

Worst-case scenario occurs in the case of a String having many partial occurrences:

Text: baeldunbaeldunbaeldunbaeldun
Pattern: baeldung

2.3. Rabin Karp Algorithm

As mentioned above, Simple Text Search algorithm is very inefficient when patterns are long and when there is a lot of repeated elements of the pattern.

The idea of Rabin Karp algorithm is to use hashing to find a pattern in a text. At the beginning of the algorithm, we need to calculate a hash of the pattern which is later used in the algorithm. This process is called fingerprint calculation, and we can find a detailed explanation here.

The important thing about pre-processing step is that its time complexity is O(m) and iteration through text will take O(n) which gives time complexity of whole algorithm O(m+n).

Code of the algorithm:

public static int RabinKarpMethod(char[] pattern, char[] text) {
    int patternSize = pattern.length;
    int textSize = text.length;      

    long prime = getBiggerPrime(patternSize);

    long r = 1;
    for (int i = 0; i < patternSize - 1; i++) {
        r *= 2;
        r = r % prime;
    }

    long[] t = new long[textSize];
    t[0] = 0;

    long pfinger = 0;

    for (int j = 0; j < patternSize; j++) {
        t[0] = (2 * t[0] + text[j]) % prime;
        pfinger = (2 * pfinger + pattern[j]) % prime;
    }

    int i = 0;
    boolean passed = false;

    int diff = textSize - patternSize;
    for (i = 0; i <= diff; i++) {
        if (t[i] == pfinger) {
            passed = true;
            for (int k = 0; k < patternSize; k++) {
                if (text[i + k] != pattern[k]) {
                    passed = false;
                    break;
                }
            }

            if (passed) {
                return i;
            }
        }

        if (i < diff) {
            long value = 2 * (t[i] - r * text[i]) + text[i + patternSize];
            t[i + 1] = ((value % prime) + prime) % prime;
        }
    }
    return -1;

}

In worst-case scenario, time complexity for this algorithm is O(m(n-m+1)). However, on average this algorithm has O(n+m) time complexity.

Additionally, there is Monte Carlo version of this algorithm which is faster, but it can result in wrong matches (false positives).

2.4. Knuth-Morris-Pratt Algorithm

In the Simple Text Search algorithm, we saw how the algorithm could be slow if there are many parts of the text which match the pattern.

The idea of the Knuth-Morris-Pratt algorithm is the calculation of shift table which provides us with the information where we should search for our pattern candidates.

Java implementation of KMP algorithm:

public static int KnuthMorrisPrattSearch(char[] pattern, char[] text) {
    int patternSize = pattern.length;
    int textSize = text.length;

    int i = 0, j = 0;

    int[] shift = KnuthMorrisPrattShift(pattern);

    while ((i + patternSize) <= textSize) {
        while (text[i + j] == pattern[j]) {
            j += 1;
            if (j >= patternSize)
                return i;
        }

        if (j > 0) {
            i += shift[j - 1];
            j = Math.max(j - shift[j - 1], 0);
        } else {
            i++;
            j = 0;
        }
    }
    return -1;
}

And here is how we calculate shift table:

public static int[] KnuthMorrisPrattShift(char[] pattern) {
    int patternSize = pattern.length;

    int[] shift = new int[patternSize];
    shift[0] = 1;

    int i = 1, j = 0;
    
    while ((i + j) < patternSize) {
        if (pattern[i + j] == pattern[j]) {
            shift[i + j] = i;
            j++;
        } else {
            if (j == 0)
                shift[i] = i + 1;
            
            if (j > 0) {
                i = i + shift[j - 1];
                j = Math.max(j - shift[j - 1], 0);
            } else {
                i = i + 1;
                j = 0;
            }
        }
    }
    return shift;
}

The time complexity of this algorithm is also O(m+n).

2.5. Simple Boyer-Moore Algorithm

Two scientists, Boyer and Moore, came up with another idea. Why not compare the pattern to the text from right to left instead of left to right, while keeping the shift direction the same:

public static int BoyerMooreHorspoolSimpleSearch(char[] pattern, char[] text) {
    int patternSize = pattern.length;
    int textSize = text.length;

    int i = 0, j = 0;
    
    while ((i + patternSize) <= textSize) {
        j = patternSize - 1;
        while (text[i + j] == pattern[j]) {
            j--;
            if (j < 0)
                return i;
        }
        i++;
    }
    return -1;
}

As expected, this will run in O(m * n) time. But this algorithm led to the implementation of occurrence and the match heuristics which speeds up the algorithm significantly. We can find more here.

2.6. Boyer-Moore-Horspool Algorithm

There are many variations of heuristic implementation of the Boyer-Moore algorithm, and simplest one is Horspool variation.

This version of the algorithm is called Boyer-Moore-Horspool, and this variation solved the problem of negative shifts (we can read about negative shift problem in the description of the Boyer-Moore algorithm).

Like Boyer-Moore algorithm, worst-case scenario time complexity is O(m * n) while average complexity is O(n). Space usage doesn’t depend on the size of the pattern, but only on the size of the alphabet which is 256 since that is the maximum value of ASCII character in English alphabet:

public static int BoyerMooreHorspoolSearch(char[] pattern, char[] text) {

    int shift[] = new int[256];
    
    for (int k = 0; k < 256; k++) {
        shift[k] = pattern.length;
    }
    
    for (int k = 0; k < pattern.length - 1; k++){
        shift[pattern[k]] = pattern.length - 1 - k;
    }

    int i = 0, j = 0;

    while ((i + pattern.length) <= text.length) {
        j = pattern.length - 1;

        while (text[i + j] == pattern[j]) {
            j -= 1;
            if (j < 0)
                return i;
        }
        
        i = i + shift[text[i + pattern.length - 1]];
    }
    return -1;
}

4. Conclusion

In this article, we presented several algorithms for text search. Since several algorithms require stronger mathematical background, we tried to represent the main idea beneath each algorithm and provide it in a simple manner.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

Partner – Microsoft – NPI EA (cat = Baeldung)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Microsoft – NPI EA (cat = Spring Boot)
announcement - icon

Azure Container Apps is a fully managed serverless container service that enables you to build and deploy modern, cloud-native Java applications and microservices at scale. It offers a simplified developer experience while providing the flexibility and portability of containers.

Of course, Azure Container Apps has really solid support for our ecosystem, from a number of build options, managed Java components, native metrics, dynamic logger, and quite a bit more.

To learn more about Java features on Azure Container Apps, visit the documentation page.

You can also ask questions and leave feedback on the Azure Container Apps GitHub page.

Partner – Orkes – NPI EA (cat = Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag = Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Partner – MongoDB – NPI EA (tag=MongoDB)
announcement - icon

Traditional keyword-based search methods rely on exact word matches, often leading to irrelevant results depending on the user's phrasing.

By comparison, using a vector store allows us to represent the data as vector embeddings, based on meaningful relationships. We can then compare the meaning of the user’s query to the stored content, and retrieve more relevant, context-aware results.

Explore how to build an intelligent chatbot using MongoDB Atlas, Langchain4j and Spring Boot:

>> Building an AI Chatbot in Java With Langchain4j and MongoDB Atlas

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

eBook Jackson – NPI EA – 3 (cat = Jackson)