Partner – Orkes – NPI EA (cat=Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag=Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Browser testing is essential if you have a website or web applications that users interact with. Manual testing can be very helpful to an extent, but given the multiple browsers available, not to mention versions and operating system, testing everything manually becomes time-consuming and repetitive.

To help automate this process, Selenium is a popular choice for developers, as an open-source tool with a large and active community. What's more, we can further scale our automation testing by running on theLambdaTest cloud-based testing platform.

Read more through our step-by-step tutorial on how to set up Selenium tests with Java and run them on LambdaTest:

>> Automated Browser Testing With Selenium

Partner – Orkes – NPI EA (cat=Java)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

1. Overview

When we are building some sort of content management solution, we need to solve two problems. We need a place to store the files themselves, and we need some sort of database to index them.

It’s possible to store the content of the files in the database itself, or we could store the content somewhere else and index it with the database.

In this article, we’re going to illustrate both of these methods with a basic Image Archive Application. We’ll also implement REST APIs for upload and download.

2. Use Case

Our Image Archive Application will allow us to upload and download JPEG images.

When we upload an image, the application will create a unique identifier for it. Then we can use this identifier to download it.

We’ll use a relational database, with Spring Data JPA and Hibernate.

3. Database Storage

Let’s start with our database.

3.1. Image Entity

First, let’s create our Image entity:

@Entity
class Image {

    @Id
    @GeneratedValue
    Long id;

    @Lob
    byte[] content;

    String name;
    // Getters and Setters
}

The id field is annotated with @GeneratedValue. This means the database will create a unique identifier for each record we add. By indexing the images with these values, we don’t need to worry about multiple uploads of the same image conflicting with each other.

Second, we have the Hibernate @Lob annotation. It’s how we tell JPA our intention of storing a potentially large binary.

3.2. Image Repository

Next, we need a repository to connect to the database.

We’ll use the spring JpaRepository:

@Repository
interface ImageDbRepository extends JpaRepository<Image, Long> {}

Now we’re ready to save our images.  We just need a way to upload them to our application.

4. REST Controller

We will use a MultipartFile to upload our images. Uploading will return the imageId we can use to download the image later.

4.1. Image Upload

Let’s start by creating our ImageController to support upload:

@RestController
class ImageController {

    @Autowired
    ImageDbRepository imageDbRepository;

    @PostMapping
    Long uploadImage(@RequestParam MultipartFile multipartImage) throws Exception {
        Image dbImage = new Image();
        dbImage.setName(multipartImage.getName());
        dbImage.setContent(multipartImage.getBytes());

        return imageDbRepository.save(dbImage)
            .getId();
    }
}

The MultipartFile object contains the content and original name of the file. We use this to construct our Image object for storing in the database.

This controller returns the generated id as the body of its response.

4.2. Image Download

Now, let’s add a download route:

@GetMapping(value = "/image/{imageId}", produces = MediaType.IMAGE_JPEG_VALUE)
Resource downloadImage(@PathVariable Long imageId) {
    byte[] image = imageRepository.findById(imageId)
      .orElseThrow(() -> new ResponseStatusException(HttpStatus.NOT_FOUND))
      .getContent();

    return new ByteArrayResource(image);
}

The imageId path variable contains the id that was generated at upload. If an invalid id is provided, then we’re using ResponseStatusException to return an HTTP response code 404 (Not Found). Otherwise, we’re wrapping the stored file bytes in a ByteArrayResource which allows them to be downloaded.

5. Database Image Archive Test

Now we’re ready to test our Image Archive.

First, let’s build our application:

mvn package

Second, let’s start it up:

java -jar target/image-archive-0.0.1-SNAPSHOT.jar

5.1. Image Upload Test

After our application is running, we’ll use the curl command-line tool to upload our image:

curl -H "Content-Type: multipart/form-data" \
  -F "[email protected]" http://localhost:8080/image

As the upload service response is the imageId, and this is our first request, the output will be:

1

5.2. Image Download Test

Then we can download our image:

curl -v http://localhost:8080/image/1 -o image.jpeg

The -o image.jpeg option will create a file named image.jpeg and store the response content in it:

% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0*   Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 8080 (#0)
> GET /image/1 HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.54.0
> Accept: */*
> 
< HTTP/1.1 200 
< Accept-Ranges: bytes
< Content-Type: image/jpeg
< Content-Length: 9291

We got an HTTP/1.1 200, which means that our download was successful.

We could also try downloading the image in our browser by hitting http://localhost:8080/image/1.

6. Separate Content and Location

So far, we’re capable of uploading and downloading images within a database.

Another good option is uploading the file content to a different location. Then we save only its filesystem location in the DB.

For that we’ll need to add a new field to our Image entity:

String location;

This will contain the logical path to the file in some external storage. In our case, it will be the path on our server’s filesystem. 

However, we can equally apply this idea to different Stores. For example, we could use cloud storage – Google Cloud Storage or Amazon S3. The location could also use a URI format, for example, s3://somebucket/path/to/file.

Our upload service, rather than writing the bytes of the file to the database, will store the file in the appropriate service – in this case, the filesystem – and will then put the location of the file into the database.

7. Filesystem Storage

Let’s add the capability to store the images in the filesystem to our solution.

7.1. Saving in the Filesystem

First, we need to save our images to the filesystem:

@Repository
class FileSystemRepository {

    String RESOURCES_DIR = FileSystemRepository.class.getResource("/")
        .getPath();

    String save(byte[] content, String imageName) throws Exception {
        Path newFile = Paths.get(RESOURCES_DIR + new Date().getTime() + "-" + imageName);
        Files.createDirectories(newFile.getParent());

        Files.write(newFile, content);

        return newFile.toAbsolutePath()
            .toString();
    }
}

One important note – we need to make sure that each of our images has a unique location defined server-side at upload time. Otherwise, our uploads may overwrite each other.

The same rule would apply to any cloud storage, where we should create unique keys. In this example, we’ll add the current date in milliseconds format to the image name:

/workspace/archive-achive/target/classes/1602949218879-baeldung.jpeg

7.2. Retrieving From Filesystem

Now let’s implement the code to fetch our image from the filesystem:

FileSystemResource findInFileSystem(String location) {
    try {
        return new FileSystemResource(Paths.get(location));
    } catch (Exception e) {
        // Handle access or file not found problems.
        throw new RuntimeException();
    }
}

Here we’re looking for the image using its location. Then we return a FileSystemResource.

Also, we’re catching any exception that may happen while reading our file. We might also wish to throw exceptions with particular HTTP statuses.

7.3. Data Streaming and Spring’s Resource

Our findInFileSystem method returns a FileSystemResource, an implementation of Spring’s Resource interface.

It will start reading our file only when we use it. In our case, it’ll be when sending it to the client via the RestController. Also, it’ll stream the file content from the filesystem to the user, saving us from loading all the bytes into memory.

This approach is a good general solution for streaming files to a client. If we’re using cloud storage instead of the filesystem, we can replace the FileSystemResource for another resource’s implementation, like the InputStreamResource or ByteArrayResource.

8. Connecting the File Content and Location

Now that we have our FileSystemRepository, we need to link it with our ImageDbRepository.

8.1. Saving in the Database and Filesystem

Let’s create a FileLocationService, starting with our save flow:

@Service
class FileLocationService {

    @Autowired
    FileSystemRepository fileSystemRepository;
    @Autowired
    ImageDbRepository imageDbRepository;

    Long save(byte[] bytes, String imageName) throws Exception {
        String location = fileSystemRepository.save(bytes, imageName);

        return imageDbRepository.save(new Image(imageName, location))
            .getId();
    }
}

First, we save the image in the filesystem. Then we save the record containing its location in the database.

8.2. Retrieving From Database and Filesystem

Now, let’s create a method to find our image using its id:

FileSystemResource find(Long imageId) {
    Image image = imageDbRepository.findById(imageId)
      .orElseThrow(() -> new ResponseStatusException(HttpStatus.NOT_FOUND));

    return fileSystemRepository.findInFileSystem(image.getLocation());
}

First, we look for our image in the database. Then we get its location and fetch it from the filesystem.

If we don’t find the imageId in the database, we’re using ResponseStatusException to return an HTTP Not Found response.

9. Filesystem Upload and Download

Finally, let’s create the FileSystemImageController:

@RestController
@RequestMapping("file-system")
class FileSystemImageController {

    @Autowired
    FileLocationService fileLocationService;

    @PostMapping("/image")
    Long uploadImage(@RequestParam MultipartFile image) throws Exception {
        return fileLocationService.save(image.getBytes(), image.getOriginalFilename());
    }

    @GetMapping(value = "/image/{imageId}", produces = MediaType.IMAGE_JPEG_VALUE)
    FileSystemResource downloadImage(@PathVariable Long imageId) throws Exception {
        return fileLocationService.find(imageId);
    }
}

First, we made our new path start with “/file-system“.

Then we created the upload route similar to that in our ImageController, but without the dbImage object.

Lastly, we have our download route, which uses the FileLocationService to find the image and returns the FileSystemResource as the HTTP response.

10. Filesystem Image Archive Test

Now, we can test our filesystem version the same way we did with our database version, though the paths now start with “file-system“:

curl -H "Content-Type: multipart/form-data" \
  -F "[email protected]" http://localhost:8080/file-system/image

1

And then we download:

curl -v http://localhost:8080/file-system/image/1 -o image.jpeg

11. Conclusion

In this article, we learned how to save file information in a database, with the file content either in the same row or in an external location.

We also built and tested a REST API using multipart upload, and we provided a download feature using Resource to allow streaming the file to the caller.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

Partner – Orkes – NPI EA (cat = Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag = Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook Jackson – NPI EA – 3 (cat = Jackson)