eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Regression testing is an important step in the release process, to ensure that new code doesn't break the existing functionality. As the codebase evolves, we want to run these tests frequently to help catch any issues early on.

The best way to ensure these tests run frequently on an automated basis is, of course, to include them in the CI/CD pipeline. This way, the regression tests will execute automatically whenever we commit code to the repository.

In this tutorial, we'll see how to create regression tests using Selenium, and then include them in our pipeline using GitHub Actions:, to be run on the LambdaTest cloud grid:

>> How to Run Selenium Regression Tests With GitHub Actions

Course – LJB – NPI EA (cat = Core Java)
announcement - icon

Code your way through and build up a solid, practical foundation of Java:

>> Learn Java Basics

1. Overview

These days, it’s hard to imagine Java without annotations, a powerful tool in the Java language.

Java provides a set of built-in annotations. Additionally, there are plenty of annotations from different libraries. We can even define and process our own annotations. We can tune these annotations with attribute values, however, these attribute values have limitations. Particularly, an annotation attribute value must be a constant expression.

In this tutorial, we’re going to learn some reasons for that limitation and look under the hood of the JVM to explain it better. We’ll also take a look at some examples of problems and solutions involving annotation attribute values.

2. Java Annotation Attributes Under the Hood

Let’s consider how Java class files store annotation attributes. Java has a special structure for it called element_value. This structure stores a particular annotation attribute.

The structure element_value can store values of four different types:

  • a constant from the pool of constants
  • a class literal
  • a nested annotation
  • an array of values

So, a constant from an annotation attribute is a compile-time constant. Otherwise, the compiler wouldn’t know what value it should put into the constant pool and use as an annotation attribute.

The Java specification defines operations producing constant expressions. If we apply these operations to compile-time constants, we’ll get compile-time constants.

Let’s assume we have an annotation @Marker that has an attribute value:

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Marker {
    String value();
}

For example, this code compiles without errors:

@Marker(Example.ATTRIBUTE_FOO + Example.ATTRIBUTE_BAR)
public class Example {
    static final String ATTRIBUTE_FOO = "foo";
    static final String ATTRIBUTE_BAR = "bar";

    // ...
}

Here, we define an annotation attribute as a concatenation of two strings. A concatenation operator produces a constant expression.

3. Using Static Initializer

Let’s consider a constant initialized in a static block:

@Marker(Example.ATTRIBUTE_FOO)
public class Example {
    static final String[] ATTRIBUTES = {"foo", "Bar"};
    static final String ATTRIBUTE_FOO;

    static {
        ATTRIBUTE_FOO = ATTRIBUTES[0];
    }
    
    // ...
}

It initializes the field in the static block and tries to use that field as an annotation attribute. This approach leads to a compilation error.

First, the variable ATTRIBUTE_FOO has static and final modifiers, but the compiler can’t compute that field. The application computes it at runtime.

Second, annotation attributes must have an exact value before the JVM loads the class. However, when the static initializer runs, the class is already loaded. So, this limitation makes sense.

The same error shows up when in the field initialization. This code is incorrect for the same reason:

@Marker(Example.ATTRIBUTE_FOO)
public class Example {
    static final String[] ATTRIBUTES = {"foo", "Bar"};
    static final String ATTRIBUTE_FOO = ATTRIBUTES[0];

    // ...
}

How does the JVM initialize ATTRIBUTE_FOO? Array access operator ATTRIBUTES[0] runs in a class initializer. So, ATTRIBUTE_FOO is a runtime constant. It’s not defined at compile-time.

4. Array Constant as an Annotation Attribute

Let’s consider an array annotation attribute:

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface Marker {
    String[] value();
}

This code will not compile:

@Marker(value = Example.ATTRIBUTES)
public class Example {
    static final String[] ATTRIBUTES = {"foo", "bar"};

    // ...
}

First, although the final modifier protects the reference from being changed, we can still modify array elements.

Second, array literals can’t be runtime constants. The JVM sets each element up in the static initializer — a limitation we described earlier.

Finally, a class file stores values of each element of that array. So, the compiler calculates each element of the attribute array, and it happens at compile-time.

Thus, we can only specify an array attribute each time:

@Marker(value = {"foo", "bar"})
public class Example {
    // ...
}

We can still use a constant as a primitive element of an array attribute.

5. Annotations in a Marker Interface: Why Doesn’t It Work?

So, if an annotation attribute is an array, we have to repeat it each time. But we would like to avoid this copy-paste. Why don’t we make our annotation @Inherited? We could add our annotation to a marker interface:

@Marker(value = {"foo", "bar"})
public interface MarkerInterface {
}

Then, we could make the classes that require this annotation implement it:

public class Example implements MarkerInterface {
    // ...
}

This approach won’t work. The code will compile without errors. However, Java doesn’t support annotation inheritance from interfaces, even if the annotations have the @Inherited annotation itself. So, a class implementing the marker interface won’t inherit the annotation.

The reason for this is the problem of multiple inheritance. Indeed, if multiple interfaces have the same annotation, Java can’t choose one.

So, we can’t avoid this copy-paste with a marker interface.

6. Array Element as an Annotation Attribute

Suppose we have an array constant and we use this constant as an annotation attribute:

@Marker(Example.ATTRIBUTES[0])
public class Example {
    static final String[] ATTRIBUTES = {"Foo", "Bar"};
    // ...
}

This code won’t compile. Annotation parameters must be a compile-time constant. But, as we considered before, an array is not a compile-time constant.

Moreover, an array access expression is not a constant expression.

What if we had a List instead of an array? Method calls do not belong to the constant expressions. Thus, using the get method of the List class results in the same error.

Instead, we should explicitly refer to a constant:

@Marker(Example.ATTRIBUTE_FOO)
public class Example {
    static final String ATTRIBUTE_FOO = "Foo";
    static final String[] ATTRIBUTES = {ATTRIBUTE_FOO, "Bar"};
    // ...
}

This way, we specify the annotation attribute value in the string constant, and the Java compiler can unambiguously find the attribute value.

7. Conclusion

In this article, we looked through the limitations of annotation parameters. We considered some examples of problems with annotation attributes. We also discussed the JVM internals in the context of these limitations.

In all examples, we used the same classes for constants and annotations. However, all these limitations hold for the cases where the constant comes from another class.

Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook Jackson – NPI EA – 3 (cat = Jackson)