eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Regression testing is an important step in the release process, to ensure that new code doesn't break the existing functionality. As the codebase evolves, we want to run these tests frequently to help catch any issues early on.

The best way to ensure these tests run frequently on an automated basis is, of course, to include them in the CI/CD pipeline. This way, the regression tests will execute automatically whenever we commit code to the repository.

In this tutorial, we'll see how to create regression tests using Selenium, and then include them in our pipeline using GitHub Actions:, to be run on the LambdaTest cloud grid:

>> How to Run Selenium Regression Tests With GitHub Actions

Course – LJB – NPI EA (cat = Core Java)
announcement - icon

Code your way through and build up a solid, practical foundation of Java:

>> Learn Java Basics

1. Overview

Strings in Java are internally represented by a char[] containing the characters of the String. And, every char is made up of 2 bytes because Java internally uses UTF-16.

For instance, if a String contains a word in the English language, the leading 8 bits will all be 0 for every char, as an ASCII character can be represented using a single byte.

Many characters require 16 bits to represent them but statistically most require only 8 bits — LATIN-1 character representation. So, there is a scope to improve the memory consumption and performance.

What’s also important is that Strings typically usually occupy a large proportion of the JVM heap space. And, because of the way they’re stored by the JVM, in most cases, a String instance can take up double space it actually needs.

In this article, we’ll discuss the Compressed String option, introduced in JDK6 and the new Compact String, recently introduced with JDK9. Both of these were designed to optimize memory consumption of Strings on the JMV.

2. Compressed String – Java 6

The JDK 6 update 21 Performance Release, introduced a new VM option:

-XX:+UseCompressedStrings

When this option is enabled, Strings are stored as byte[], instead of char[] – thus, saving a lot of memory. However, this option was eventually removed in JDK 7, mainly because it had some unintended performance consequences.

3. Compact String – Java 9

Java 9 has brought the concept of compact Strings back.

This means that whenever we create a String if all the characters of the String can be represented using a byte — LATIN-1 representation, a byte array will be used internally, such that one byte is given for one character.

In other cases, if any character requires more than 8-bits to represent it, all the characters are stored using two bytes for each — UTF-16 representation.

So basically, whenever possible, it’ll just use a single byte for each character.

Now, the question is – how will all the String operations work? How will it distinguish between the LATIN-1 and UTF-16 representations?

Well, to tackle this issue, another change is made to the internal implementation of the String. We have a final field coder, that preserves this information.

3.1. String Implementation in Java 9

Until now, the String was stored as a char[]:

private final char[] value;

From now on, it’ll be a byte[]:

private final byte[] value;

The variable coder:

private final byte coder;

Where the coder can be:

static final byte LATIN1 = 0;
static final byte UTF16 = 1;

Most of the String operations now check the coder and dispatch to the specific implementation:

public int indexOf(int ch, int fromIndex) {
    return isLatin1() 
      ? StringLatin1.indexOf(value, ch, fromIndex) 
      : StringUTF16.indexOf(value, ch, fromIndex);
}  

private boolean isLatin1() {
    return COMPACT_STRINGS && coder == LATIN1;
}

With all the info the JVM needs ready and available, the CompactString VM option is enabled by default. To disable it, we can use:

+XX:-CompactStrings

3.2. How coder Works

In Java 9 String class implementation, the length is calculated as:

public int length() {
    return value.length >> coder;
}

If the String contains only LATIN-1, the value of the coder will be 0 so the length of the String will be the same as the length of the byte array.

In other cases, if the String is in UTF-16 representation, the value of coder will be 1, and hence the length will be half the size of the actual byte array.

Note that all the changes made for Compact String, are in the internal implementation of the String class and are fully transparent for developers using String.

4. Compact Strings vs. Compressed Strings

In case of JDK 6 Compressed Strings, a major problem faced was that the String constructor accepted only char[] as an argument. In addition to this, many String operations depended on char[] representation and not a byte array. Due to this, a lot of unpacking had to be done, which affected the performance.

Whereas in case of Compact String, maintaining the extra field “coder” can also increase the overhead. To mitigate the cost of the coder and the unpacking of bytes to chars (in case of UTF-16 representation), some of the methods are intrinsified and the ASM code generated by the JIT compiler has also been improved.

This change resulted in some counter-intuitive results. The LATIN-1 indexOf(String) calls an intrinsic method, whereas the indexOf(char) does not. In case of UTF-16, both of these methods call an intrinsic method. This issue affects only the LATIN-1 String and will be fixed in future releases.

Thus, Compact Strings are better than the Compressed Strings in terms of performance.

To find out how much memory is saved using the Compact Strings, various Java application heap dumps were analyzed. And, while results were heavily dependent on the specific applications, the overall improvements were almost always considerable.

4.1. Difference in Performance

Let’s see a very simple example of the performance difference between enabling and disabling Compact Strings:

long startTime = System.currentTimeMillis();
 
List strings = IntStream.rangeClosed(1, 10_000_000)
  .mapToObj(Integer::toString) 
  .collect(toList());
 
long totalTime = System.currentTimeMillis() - startTime;
System.out.println(
  "Generated " + strings.size() + " strings in " + totalTime + " ms.");

startTime = System.currentTimeMillis();
 
String appended = (String) strings.stream()
  .limit(100_000)
  .reduce("", (l, r) -> l.toString() + r.toString());
 
totalTime = System.currentTimeMillis() - startTime;
System.out.println("Created string of length " + appended.length() 
  + " in " + totalTime + " ms.");

Here, we are creating 10 million Strings and then appending them in a naive manner. When we run this code (Compact Strings are enabled by default), we get the output:

Generated 10000000 strings in 854 ms.
Created string of length 488895 in 5130 ms.

Similarly, if we run it by disabling the Compact Strings using: -XX:-CompactStrings option, the output is:

Generated 10000000 strings in 936 ms.
Created string of length 488895 in 9727 ms.

Clearly, this is a surface level test, and it can’t be highly representative – it’s only a snapshot of what the new option may do to improve performance in this particular scenario.

5. Conclusion

In this tutorial, we saw the attempts to optimize the performance and memory consumption on the JVM – by storing Strings in a memory efficient way.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook Jackson – NPI EA – 3 (cat = Jackson)