Partner – Orkes – NPI EA (cat=Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag=Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Browser testing is essential if you have a website or web applications that users interact with. Manual testing can be very helpful to an extent, but given the multiple browsers available, not to mention versions and operating system, testing everything manually becomes time-consuming and repetitive.

To help automate this process, Selenium is a popular choice for developers, as an open-source tool with a large and active community. What's more, we can further scale our automation testing by running on theLambdaTest cloud-based testing platform.

Read more through our step-by-step tutorial on how to set up Selenium tests with Java and run them on LambdaTest:

>> Automated Browser Testing With Selenium

Partner – Orkes – NPI EA (cat=Java)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

1. Overview

Spring Data MongoDB provides simple high-level abstractions to MongoDB native query language. In this article, we will explore the support for Projections and Aggregation framework.

If you’re new to this topic, refer to our introductory article Introduction to Spring Data MongoDB.

2. Projection

In MongoDB, Projections are a way to fetch only the required fields of a document from a database. This reduces the amount of data that has to be transferred from database server to client and hence increases performance.

With Spring Data MongDB, projections can be used both with MongoTemplate and MongoRepository.

Before we move further, let’s look at the data model we will be using:

@Document
public class User {
    @Id
    private String id;
    private String name;
    private Integer age;
    
    // standard getters and setters
}

2.1. Projections Using MongoTemplate

The include() and exclude() methods on the Field class is used to include and exclude fields respectively:

Query query = new Query();
query.fields().include("name").exclude("id");
List<User> john = mongoTemplate.find(query, User.class);

These methods can be chained together to include or exclude multiple fields. The field marked as @Id (_id in the database) is always fetched unless explicitly excluded.

Excluded fields are null in the model class instance when records are fetched with projection. In the case where fields are of a primitive type or their wrapper class, then the value of excluded fields are default values of the primitive types.

For example, String would be null, int/Integer would be 0 and boolean/Boolean would be false.

Thus in the above example, the name field would be John, id would be null and age would be 0.

2.2. Projections Using MongoRepository

While using MongoRepositories, the fields of @Query annotation can be defined in JSON format:

@Query(value="{}", fields="{name : 1, _id : 0}")
List<User> findNameAndExcludeId();

The result would be same as using the MongoTemplate. The value=”{}” denotes no filters and hence all the documents will be fetched.

3. Aggregation

Aggregation in MongoDB was built to process data and return computed results. Data is processed in stages and the output of one stage is provided as input to the next stage. This ability to apply transformations and do computations on data in stages makes aggregation a very powerful tool for analytics.

Spring Data MongoDB provides an abstraction for native aggregation queries using the three classes Aggregation which wraps an aggregation query, AggregationOperation which wraps individual pipeline stages and AggregationResults which is the container of the result produced by aggregation.

To perform and aggregation, first, create aggregation pipelines using the static builder methods on Aggregation class, then create an instance of Aggregation using the newAggregation() method on the Aggregation class and finally run the aggregation using MongoTemplate:

MatchOperation matchStage = Aggregation.match(new Criteria("foo").is("bar"));
ProjectionOperation projectStage = Aggregation.project("foo", "bar.baz");
        
Aggregation aggregation 
  = Aggregation.newAggregation(matchStage, projectStage);

AggregationResults<OutType> output 
  = mongoTemplate.aggregate(aggregation, "foobar", OutType.class);

Please note that both MatchOperation and ProjectionOperation implement AggregationOperation. There are similar implementations for other aggregation pipelines. OutType is the data model for expected output.

Now, we will look at a few examples and their explanations to cover the major aggregation pipelines and operators.

The dataset which we will be using in this article lists details about all the zip codes in the US which can be downloaded from MongoDB repository.

Let’s look at a sample document after importing it into a collection called zips in the test database.

{
    "_id" : "01001",
    "city" : "AGAWAM",
    "loc" : [
        -72.622739,
        42.070206
    ],
    "pop" : 15338,
    "state" : "MA"
}

For the sake of simplicity and to make code concise, in the next code snippets, we will assume that all the static methods of Aggregation class are statically imported.

3.1. Get All the States With a Population Greater Than 10 Million Order by Population Descending

Here we will have three pipelines:

  1. $group stage summing up the population of all zip codes
  2. $match stage to filter out states with population over 10 million
  3. $sort stage to sort all the documents in descending order of population

The expected output will have a field _id as state and a field statePop with the total state population. Let’s create a data model for this and run the aggregation:

public class StatePoulation {
 
    @Id
    private String state;
    private Integer statePop;
 
    // standard getters and setters
}

The @Id annotation will map the _id field from output to state in the model:

GroupOperation groupByStateAndSumPop = group("state")
  .sum("pop").as("statePop");
MatchOperation filterStates = match(new Criteria("statePop").gt(10000000));
SortOperation sortByPopDesc = sort(Sort.by(Direction.DESC, "statePop"));

Aggregation aggregation = newAggregation(
  groupByStateAndSumPop, filterStates, sortByPopDesc);
AggregationResults<StatePopulation> result = mongoTemplate.aggregate(
  aggregation, "zips", StatePopulation.class);

The AggregationResults class implements Iterable and hence we can iterate over it and print the results.

If the output data model is not known, the standard MongoDB class Document can be used.

3.2. Get Smallest State by Average City Population

For this problem, we will need four stages:

  1. $group to sum the total population of each city
  2. $group to calculate average population of each state
  3. $sort stage to order states by their average city population in ascending order
  4. $limit to get the first state with lowest average city population

Although it’s not necessarily required, we will use an additional $project stage to reformat the document as per out StatePopulation data model.

GroupOperation sumTotalCityPop = group("state", "city")
  .sum("pop").as("cityPop");
GroupOperation averageStatePop = group("_id.state")
  .avg("cityPop").as("avgCityPop");
SortOperation sortByAvgPopAsc = sort(Sort.by(Direction.ASC, "avgCityPop"));
LimitOperation limitToOnlyFirstDoc = limit(1);
ProjectionOperation projectToMatchModel = project()
  .andExpression("_id").as("state")
  .andExpression("avgCityPop").as("statePop");

Aggregation aggregation = newAggregation(
  sumTotalCityPop, averageStatePop, sortByAvgPopAsc,
  limitToOnlyFirstDoc, projectToMatchModel);

AggregationResults<StatePopulation> result = mongoTemplate
  .aggregate(aggregation, "zips", StatePopulation.class);
StatePopulation smallestState = result.getUniqueMappedResult();

In this example, we already know that there will be only one document in the result since we limit the number of output documents to 1 in the last stage. As such, we can invoke getUniqueMappedResult() to get the required StatePopulation instance.

Another thing to notice is that, instead of relying on the @Id annotation to map _id to state, we have explicitly done it in projection stage.

3.3. Get the State With Maximum and Minimum Zip Codes

For this example, we need three stages:

  1. $group to count the number of zip codes for each state
  2. $sort to order the states by the number of zip codes
  3. $group to find the state with max and min zip codes using $first and $last operators
GroupOperation sumZips = group("state").count().as("zipCount");
SortOperation sortByCount = sort(Direction.ASC, "zipCount");
GroupOperation groupFirstAndLast = group().first("_id").as("minZipState")
  .first("zipCount").as("minZipCount").last("_id").as("maxZipState")
  .last("zipCount").as("maxZipCount");

Aggregation aggregation = newAggregation(sumZips, sortByCount, groupFirstAndLast);

AggregationResults<Document> result = mongoTemplate
  .aggregate(aggregation, "zips", Document.class);
Document document= result.getUniqueMappedResult();

Here we have not used any model but used the Document already provided with MongoDB driver.

4. Conclusion

In this article, we learned how to fetch specified fields of a document in MongoDB using projections in Spring Data MongoDB.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

Partner – Orkes – NPI EA (cat = Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag = Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook Jackson – NPI EA – 3 (cat = Jackson)