eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Regression testing is an important step in the release process, to ensure that new code doesn't break the existing functionality. As the codebase evolves, we want to run these tests frequently to help catch any issues early on.

The best way to ensure these tests run frequently on an automated basis is, of course, to include them in the CI/CD pipeline. This way, the regression tests will execute automatically whenever we commit code to the repository.

In this tutorial, we'll see how to create regression tests using Selenium, and then include them in our pipeline using GitHub Actions:, to be run on the LambdaTest cloud grid:

>> How to Run Selenium Regression Tests With GitHub Actions

Course – LJB – NPI EA (cat = Core Java)
announcement - icon

Code your way through and build up a solid, practical foundation of Java:

>> Learn Java Basics

eBook – Reactive – NPI(cat= Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

1. Introduction

In this article, we’ll take a look at how to handle exceptions and errors using RxJava.

First, keep in mind that the Observable typically does not throw exceptions. Instead, by default, Observable invokes its Observer’s onError() method, notifying the observer that an unrecoverable error just occurred, and then quits without invoking any more of its Observer’s methods.

The error handling operators we are about to introduce change the default behavior by resuming or retrying the Observable sequence.

2. Maven Dependencies

First, let’s add the RxJava in the pom.xml:

<dependency>
    <groupId>io.reactivex.rxjava2</groupId>
    <artifactId>rxjava</artifactId>
    <version>2.1.3</version>
</dependency>

The latest version of the artifact can be found here.

3. Error Handling

When an error occurs, we usually need to handle it in some way. For example, alter related external states, resuming the sequence with default results, or simply leave it be so that the error could propagate.

3.1. Action on Error

With doOnError, we can invoke whatever action that is needed when there is an error:

@Test
public void whenChangeStateOnError_thenErrorThrown() {
    TestObserver testObserver = new TestObserver();
    AtomicBoolean state = new AtomicBoolean(false);
    Observable
      .error(UNKNOWN_ERROR)
      .doOnError(throwable -> state.set(true))
      .subscribe(testObserver);

    testObserver.assertError(UNKNOWN_ERROR);
    testObserver.assertNotComplete();
    testObserver.assertNoValues();
 
    assertTrue("state should be changed", state.get());
}

In case of an exception being thrown while performing the action, RxJava wraps the exception in a CompositeException:

@Test
public void whenExceptionOccurOnError_thenCompositeExceptionThrown() {
    TestObserver testObserver = new TestObserver();
    Observable
      .error(UNKNOWN_ERROR)
      .doOnError(throwable -> {
          throw new RuntimeException("unexcepted");
      })
      .subscribe(testObserver);

    testObserver.assertError(CompositeException.class);
    testObserver.assertNotComplete();
    testObserver.assertNoValues();
}

3.2. Resume With Default Items

Though we can invoke actions with doOnError, but the error still breaks the standard sequence flow. Sometimes we want to resume the sequence with a default option, that’s what onErrorReturnItem does:

@Test
public void whenHandleOnErrorResumeItem_thenResumed(){
    TestObserver testObserver = new TestObserver();
    Observable
      .error(UNKNOWN_ERROR)
      .onErrorReturnItem("singleValue")
      .subscribe(testObserver);
 
    testObserver.assertNoErrors();
    testObserver.assertComplete();
    testObserver.assertValueCount(1);
    testObserver.assertValue("singleValue");
}

If a dynamic default item supplier is preferred, we can use the onErrorReturn:

@Test
public void whenHandleOnErrorReturn_thenResumed() {
    TestObserver testObserver = new TestObserver();
    Observable
      .error(UNKNOWN_ERROR)
      .onErrorReturn(Throwable::getMessage)
      .subscribe(testObserver);

    testObserver.assertNoErrors();
    testObserver.assertComplete();
    testObserver.assertValueCount(1);
    testObserver.assertValue("unknown error");
}

3.3. Resume with Another Sequence

Instead of falling back to a single item, we may supply fallback data sequence using onErrorResumeNext when encountering errors. This would help prevent error propagation:

@Test
public void whenHandleOnErrorResume_thenResumed() {
    TestObserver testObserver = new TestObserver();
    Observable
      .error(UNKNOWN_ERROR)
      .onErrorResumeNext(Observable.just("one", "two"))
      .subscribe(testObserver);

    testObserver.assertNoErrors();
    testObserver.assertComplete();
    testObserver.assertValueCount(2);
    testObserver.assertValues("one", "two");
}

If the fallback sequence differs according to the specific exception types, or the sequence needs to be generated by a function, we can pass the function to the onErrorResumeNext:

@Test
public void whenHandleOnErrorResumeFunc_thenResumed() {
    TestObserver testObserver = new TestObserver();
    Observable
      .error(UNKNOWN_ERROR)
      .onErrorResumeNext(throwable -> Observable
        .just(throwable.getMessage(), "nextValue"))
      .subscribe(testObserver);

    testObserver.assertNoErrors();
    testObserver.assertComplete();
    testObserver.assertValueCount(2);
    testObserver.assertValues("unknown error", "nextValue");
}

3.4. Handle Exception Only

RxJava also provides a fallback method that allows continuing the sequence with a provided Observable when an exception (but no error) is raised:

@Test
public void whenHandleOnException_thenResumed() {
    TestObserver testObserver = new TestObserver();
    Observable
      .error(UNKNOWN_EXCEPTION)
      .onExceptionResumeNext(Observable.just("exceptionResumed"))
      .subscribe(testObserver);

    testObserver.assertNoErrors();
    testObserver.assertComplete();
    testObserver.assertValueCount(1);
    testObserver.assertValue("exceptionResumed");
}

@Test
public void whenHandleOnException_thenNotResumed() {
    TestObserver testObserver = new TestObserver();
    Observable
      .error(UNKNOWN_ERROR)
      .onExceptionResumeNext(Observable.just("exceptionResumed"))
      .subscribe(testObserver);

    testObserver.assertError(UNKNOWN_ERROR);
    testObserver.assertNotComplete();
}

As the code above shows, when an error does occur, the onExceptionResumeNext won’t kick in to resume the sequence.

4. Retry on Error

The normal sequence may be broken by a temporary system failure or backend error. In these situations, we want to retry and wait until the sequence is fixed.

Luckily, RxJava gives us options to perform exactly that.

4.1. Retry

By using retry, the Observable will be re-subscribed infinite times until when there’s no error. But most of the time we would prefer a fixed amount of retries:

@Test
public void whenRetryOnError_thenRetryConfirmed() {
    TestObserver testObserver = new TestObserver();
    AtomicInteger atomicCounter = new AtomicInteger(0);
    Observable
      .error(() -> {
          atomicCounter.incrementAndGet();
          return UNKNOWN_ERROR;
      })
      .retry(1)
      .subscribe(testObserver);

    testObserver.assertError(UNKNOWN_ERROR);
    testObserver.assertNotComplete();
    testObserver.assertNoValues();
    assertTrue("should try twice", atomicCounter.get() == 2);
}

4.2. Retry on Condition

Conditional retry is also feasible in RxJava, using retry with predicates or using retryUntil:

@Test
public void whenRetryConditionallyOnError_thenRetryConfirmed() {
    TestObserver testObserver = new TestObserver();
    AtomicInteger atomicCounter = new AtomicInteger(0);
    Observable
      .error(() -> {
          atomicCounter.incrementAndGet();
          return UNKNOWN_ERROR;
      })
      .retry((integer, throwable) -> integer < 4)
      .subscribe(testObserver);

    testObserver.assertError(UNKNOWN_ERROR);
    testObserver.assertNotComplete();
    testObserver.assertNoValues();
    assertTrue("should call 4 times", atomicCounter.get() == 4);
}

@Test
public void whenRetryUntilOnError_thenRetryConfirmed() {
    TestObserver testObserver = new TestObserver();
    AtomicInteger atomicCounter = new AtomicInteger(0);
    Observable
      .error(UNKNOWN_ERROR)
      .retryUntil(() -> atomicCounter.incrementAndGet() > 3)
      .subscribe(testObserver);
    testObserver.assertError(UNKNOWN_ERROR);
    testObserver.assertNotComplete();
    testObserver.assertNoValues();
    assertTrue("should call 4 times", atomicCounter.get() == 4);
}

4.3. RetryWhen

Beyond these basics options, there’s also an interesting retry method: retryWhen.

This returns an Observable, say “NewO”, that emits the same values as the source ObservableSource, say “OldO”, but if the returned Observable “NewO” calls onComplete or onError, the subscriber’s onComplete or onError will be invoked.

And if “NewO” emits any item, a re-subscription to the source ObservableSource “OldO” will be triggered.

The tests below shows how this works:

@Test
public void whenRetryWhenOnError_thenRetryConfirmed() {
    TestObserver testObserver = new TestObserver();
    Exception noretryException = new Exception("don't retry");
    Observable
      .error(UNKNOWN_ERROR)
      .retryWhen(throwableObservable -> Observable.error(noretryException))
      .subscribe(testObserver);

    testObserver.assertError(noretryException);
    testObserver.assertNotComplete();
    testObserver.assertNoValues();
}

@Test
public void whenRetryWhenOnError_thenCompleted() {
    TestObserver testObserver = new TestObserver();
    AtomicInteger atomicCounter = new AtomicInteger(0);
    Observable
      .error(() -> {
        atomicCounter.incrementAndGet();
        return UNKNOWN_ERROR;
      })
      .retryWhen(throwableObservable -> Observable.empty())
      .subscribe(testObserver);

    testObserver.assertNoErrors();
    testObserver.assertComplete();
    testObserver.assertNoValues();
    assertTrue("should not retry", atomicCounter.get()==0);
}

@Test
public void whenRetryWhenOnError_thenResubscribed() {
    TestObserver testObserver = new TestObserver();
    AtomicInteger atomicCounter = new AtomicInteger(0);
    Observable
      .error(() -> {
        atomicCounter.incrementAndGet();
        return UNKNOWN_ERROR;
      })
      .retryWhen(throwableObservable -> Observable.just("anything"))
      .subscribe(testObserver);

    testObserver.assertNoErrors();
    testObserver.assertComplete();
    testObserver.assertNoValues();
    assertTrue("should retry once", atomicCounter.get()==1);
}

A typical usage of retryWhen is limited retries with variable delays:

@Test
public void whenRetryWhenForMultipleTimesOnError_thenResumed() {
    TestObserver testObserver = new TestObserver();
    long before = System.currentTimeMillis();
    Observable
      .error(UNKNOWN_ERROR)
      .retryWhen(throwableObservable -> throwableObservable
        .zipWith(Observable.range(1, 3), (throwable, integer) -> integer)
        .flatMap(integer -> Observable.timer(integer, TimeUnit.SECONDS)))
      .blockingSubscribe(testObserver);

    testObserver.assertNoErrors();
    testObserver.assertComplete();
    testObserver.assertNoValues();
    long secondsElapsed = (System.currentTimeMillis() - before)/1000;
    assertTrue("6 seconds should elapse",secondsElapsed == 6 );
}

Notice how this logic retries three times and incrementally delays each retry.

5. Summary

In this article, we introduced a number of ways of handling errors and exceptions in RxJava.

There are also several RxJava-specific exceptions relating to error handling – have a look at the official wiki for more details.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook Jackson – NPI EA – 3 (cat = Jackson)