Partner – Orkes – NPI EA (cat=Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag=Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – Guide Spring Cloud – NPI EA (cat=Spring Cloud)
announcement - icon

Let's get started with a Microservice Architecture with Spring Cloud:

>> Join Pro and download the eBook

eBook – Mockito – NPI EA (tag = Mockito)
announcement - icon

Mocking is an essential part of unit testing, and the Mockito library makes it easy to write clean and intuitive unit tests for your Java code.

Get started with mocking and improve your application tests using our Mockito guide:

Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Reactive – NPI EA (cat=Reactive)
announcement - icon

Spring 5 added support for reactive programming with the Spring WebFlux module, which has been improved upon ever since. Get started with the Reactor project basics and reactive programming in Spring Boot:

>> Join Pro and download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Jackson – NPI EA (cat=Jackson)
announcement - icon

Do JSON right with Jackson

Download the E-book

eBook – HTTP Client – NPI EA (cat=Http Client-Side)
announcement - icon

Get the most out of the Apache HTTP Client

Download the E-book

eBook – Maven – NPI EA (cat = Maven)
announcement - icon

Get Started with Apache Maven:

Download the E-book

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

eBook – RwS – NPI EA (cat=Spring MVC)
announcement - icon

Building a REST API with Spring?

Download the E-book

Course – LS – NPI EA (cat=Jackson)
announcement - icon

Get started with Spring and Spring Boot, through the Learn Spring course:

>> LEARN SPRING
Course – RWSB – NPI EA (cat=REST)
announcement - icon

Explore Spring Boot 3 and Spring 6 in-depth through building a full REST API with the framework:

>> The New “REST With Spring Boot”

Course – LSS – NPI EA (cat=Spring Security)
announcement - icon

Yes, Spring Security can be complex, from the more advanced functionality within the Core to the deep OAuth support in the framework.

I built the security material as two full courses - Core and OAuth, to get practical with these more complex scenarios. We explore when and how to use each feature and code through it on the backing project.

You can explore the course here:

>> Learn Spring Security

Partner – LambdaTest – NPI EA (cat=Testing)
announcement - icon

Browser testing is essential if you have a website or web applications that users interact with. Manual testing can be very helpful to an extent, but given the multiple browsers available, not to mention versions and operating system, testing everything manually becomes time-consuming and repetitive.

To help automate this process, Selenium is a popular choice for developers, as an open-source tool with a large and active community. What's more, we can further scale our automation testing by running on theLambdaTest cloud-based testing platform.

Read more through our step-by-step tutorial on how to set up Selenium tests with Java and run them on LambdaTest:

>> Automated Browser Testing With Selenium

Partner – Orkes – NPI EA (cat=Java)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Course – LSD – NPI EA (tag=Spring Data JPA)
announcement - icon

Spring Data JPA is a great way to handle the complexity of JPA with the powerful simplicity of Spring Boot.

Get started with Spring Data JPA through the guided reference course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (cat=Spring Boot)
announcement - icon

Refactor Java code safely — and automatically — with OpenRewrite.

Refactoring big codebases by hand is slow, risky, and easy to put off. That’s where OpenRewrite comes in. The open-source framework for large-scale, automated code transformations helps teams modernize safely and consistently.

Each month, the creators and maintainers of OpenRewrite at Moderne run live, hands-on training sessions — one for newcomers and one for experienced users. You’ll see how recipes work, how to apply them across projects, and how to modernize code with confidence.

Join the next session, bring your questions, and learn how to automate the kind of work that usually eats your sprint time.

1. Overview

In this tutorial, we’re going to introduce the Intercepting Filter Pattern presentation-tier Core J2EE Pattern.

This is the second tutorial in our Pattern Series and a follow-up to the Front Controller Pattern guide which can be found here.

Intercepting Filters are filters that trigger actions before or after an incoming request is processed by a handler.

Intercepting filters represents centralized components in a web application, common to all requests and extensible without affecting existing handlers.

2. Use Cases

Let’s extend the example from the previous guide and implement an authentication mechanism, request logging, and a visitor counter. In addition, we want the ability to deliver our pages in various different encoding.

All these are use cases for intercepting filters because they are common to all requests and should be independent of the handlers.

3. Filter Strategies

Let us introduce different filter strategies and exemplary use cases. To run the code with Jetty Servlet container, simply execute:

$> mvn install jetty:run

3.1. Custom Filter Strategy

The custom filter strategy is used in every use case that requires an ordered processing of requests, in the meaning of one filter is based on the results of a previous filter in an execution chain.

These chains will be created by implementing the FilterChain interface and registering various Filter classes with it.

When using multiple filter chains with different concerns, you can join them together in a filter manager:

intercepting filter-custom strategy

 

In our example, the visitor counter is working by counting unique usernames from logged-in users, which means it’s based on the result of the authentication filter, therefore, both filters have to be chained.

Let’s implement this filter chain.

First, we’ll create an authentication filter which checks if the session exists for a set ‘username’ attribute and issue a login procedure if not:

public class AuthenticationFilter implements Filter {
    ...
    @Override
    public void doFilter(
      ServletRequest request,
      ServletResponse response, 
      FilterChain chain) {
        HttpServletRequest httpServletRequest = (HttpServletRequest) request;
        HttpServletResponse httpServletResponse = (HttpServletResponse) response;
        
        HttpSession session = httpServletRequest.getSession(false);
        if (session == null || session.getAttribute("username") == null) {
            FrontCommand command = new LoginCommand();
            command.init(httpServletRequest, httpServletResponse);
            command.process();
        } else {
            chain.doFilter(request, response);
        }
    }
    
    ...
}

Now let’s create the visitor counter. This filter maintains a HashSet of unique usernames and adds a ‘counter’ attribute to the request:

public class VisitorCounterFilter implements Filter {
    private static Set<String> users = new HashSet<>();

    ...
    @Override
    public void doFilter(ServletRequest request, ServletResponse response,
      FilterChain chain) {
        HttpSession session = ((HttpServletRequest) request).getSession(false);
        Optional.ofNullable(session.getAttribute("username"))
          .map(Object::toString)
          .ifPresent(users::add);
        request.setAttribute("counter", users.size());
        chain.doFilter(request, response);
    }

    ...
}

Next, we’ll implement a FilterChain that iterates registered filters and executes doFilter method:

public class FilterChainImpl implements FilterChain {
    private Iterator<Filter> filters;

    public FilterChainImpl(Filter... filters) {
        this.filters = Arrays.asList(filters).iterator();
    }

    @Override
    public void doFilter(ServletRequest request, ServletResponse response) {
        if (filters.hasNext()) {
            Filter filter = filters.next();
            filter.doFilter(request, response, this);
        }
    }
}

To wire our components together, let’s create a simple static manager which is responsible for instantiating filter chains, registering its filters, and initiate it:

public class FilterManager {
    public static void process(HttpServletRequest request,
      HttpServletResponse response, OnIntercept callback) {
        FilterChain filterChain = new FilterChainImpl(
          new AuthenticationFilter(callback), new VisitorCounterFilter());
        filterChain.doFilter(request, response);
    }
}

As the last step we’ll have to call our FilterManager as common part of the request processing sequence from within our FrontCommand:

public abstract class FrontCommand {
    ...

    public void process() {
        FilterManager.process(request, response);
    }

    ...
}

3.2. Base Filter Strategy

In this section, we’ll present the Base Filter Strategy, with which a common superclass is used for all implemented filters.

This strategy plays nicely together with the custom strategy from the previous section or with the Standard Filter Strategy that we’ll introduce in the next section.

The abstract base class can be used to apply custom behavior that belongs to a filter chain. We’ll use it in our example to reduce boilerplate code related to filter configuration and debug logging:

public abstract class BaseFilter implements Filter {
    private Logger log = LoggerFactory.getLogger(BaseFilter.class);

    protected FilterConfig filterConfig;

    @Override
    public void init(FilterConfig filterConfig) throws ServletException {
        log.info("Initialize filter: {}", getClass().getSimpleName());
        this.filterConfig = filterConfig;
    }

    @Override
    public void destroy() {
        log.info("Destroy filter: {}", getClass().getSimpleName());
    }
}

Let’s extend this base class to create a request logging filter, which will be integrated into the next section:

public class LoggingFilter extends BaseFilter {
    private static final Logger log = LoggerFactory.getLogger(LoggingFilter.class);

    @Override
    public void doFilter(
      ServletRequest request, 
      ServletResponse response,
      FilterChain chain) {
        chain.doFilter(request, response);
        HttpServletRequest httpServletRequest = (HttpServletRequest) request;
        
        String username = Optional
          .ofNullable(httpServletRequest.getAttribute("username"))
          .map(Object::toString)
          .orElse("guest");
        
        log.info(
          "Request from '{}@{}': {}?{}", 
          username, 
          request.getRemoteAddr(),
          httpServletRequest.getRequestURI(), 
          request.getParameterMap());
    }
}

3.3. Standard Filter Strategy

A more flexible way of applying filters is to implement the Standard Filter Strategy. This can be done by declaring filters in a deployment descriptor or, since Servlet specification 3.0, by annotation.

The standard filter strategy allows to plug-in new filters into a default chain without having an explicitly defined filter manager:

intercepting filter-standard strategy

 

Note that the order, in which the filters get applied, cannot be specified via annotation. If you need an ordered execution, you have to stick with a deployment descriptor or implement a custom filter strategy.

Let’s implement an annotation driven encoding filter that also uses the base filter strategy:

@WebFilter(servletNames = {"intercepting-filter"}, 
  initParams = {@WebInitParam(name = "encoding", value = "UTF-8")})
public class EncodingFilter extends BaseFilter {
    private String encoding;

    @Override
    public void init(FilterConfig filterConfig) throws ServletException {
        super.init(filterConfig);
        this.encoding = filterConfig.getInitParameter("encoding");
    }

    @Override
    public void doFilter(ServletRequest request,
      ServletResponse response, FilterChain chain) {
        String encoding = Optional
          .ofNullable(request.getParameter("encoding"))
          .orElse(this.encoding);
        response.setCharacterEncoding(encoding); 
        
        chain.doFilter(request, response);
    }
}

In a Servlet scenario with having a deployment descriptor, our web.xml would contain these extra declarations:

<filter>
    <filter-name>encoding-filter</filter-name>
    <filter-class>
      com.baeldung.patterns.intercepting.filter.filters.EncodingFilter
    </filter-class>
</filter>
<filter-mapping>
    <filter-name>encoding-filter</filter-name>
    <servlet-name>intercepting-filter</servlet-name>
</filter-mapping>

Let’s pick-up our logging filter and annotate it too, in order to get used by the Servlet:

@WebFilter(servletNames = "intercepting-filter")
public class LoggingFilter extends BaseFilter {
    ...
}

3.4. Template Filter Strategy

The Template Filter Strategy is pretty much the same as the base filter strategy, except that it uses template methods declared in the base class that must be overridden in implementations:

intercepting filter-template strategy

 

Let’s create a base filter class with two abstract filter methods that get called before and after further processing.

Since this strategy is less common and we don’t use it in our example, a concrete implementation and use case is up to your imagination:

public abstract class TemplateFilter extends BaseFilter {
    protected abstract void preFilter(HttpServletRequest request,
      HttpServletResponse response);

    protected abstract void postFilter(HttpServletRequest request,
      HttpServletResponse response);

    @Override
    public void doFilter(ServletRequest request,
      ServletResponse response, FilterChain chain) {
        HttpServletRequest httpServletRequest = (HttpServletRequest) request;
        HttpServletResponse httpServletResponse = (HttpServletResponse) response;
        
        preFilter(httpServletRequest, httpServletResponse);
        chain.doFilter(request, response);
        postFilter(httpServletRequest, httpServletResponse);
    }
}

4. Conclusion

The Intercepting Filter Pattern captures cross-cutting concerns that can evolve independently of the business logic. From the perspective of business operations, filters are executed as a chain of pre or post actions.

As we’ve seen so far, the Intercepting Filter Pattern can be implemented using different strategies. In a ‘real world’ applications these different approaches can be combined.

The code backing this article is available on GitHub. Once you're logged in as a Baeldung Pro Member, start learning and coding on the project.
Baeldung Pro – NPI EA (cat = Baeldung)
announcement - icon

Baeldung Pro comes with both absolutely No-Ads as well as finally with Dark Mode, for a clean learning experience:

>> Explore a clean Baeldung

Once the early-adopter seats are all used, the price will go up and stay at $33/year.

Partner – Orkes – NPI EA (cat = Spring)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

Partner – Orkes – NPI EA (tag = Microservices)
announcement - icon

Modern software architecture is often broken. Slow delivery leads to missed opportunities, innovation is stalled due to architectural complexities, and engineering resources are exceedingly expensive.

Orkes is the leading workflow orchestration platform built to enable teams to transform the way they develop, connect, and deploy applications, microservices, AI agents, and more.

With Orkes Conductor managed through Orkes Cloud, developers can focus on building mission critical applications without worrying about infrastructure maintenance to meet goals and, simply put, taking new products live faster and reducing total cost of ownership.

Try a 14-Day Free Trial of Orkes Conductor today.

eBook – HTTP Client – NPI EA (cat=HTTP Client-Side)
announcement - icon

The Apache HTTP Client is a very robust library, suitable for both simple and advanced use cases when testing HTTP endpoints. Check out our guide covering basic request and response handling, as well as security, cookies, timeouts, and more:

>> Download the eBook

eBook – Java Concurrency – NPI EA (cat=Java Concurrency)
announcement - icon

Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.

Get started with understanding multi-threaded applications with our Java Concurrency guide:

>> Download the eBook

eBook – Java Streams – NPI EA (cat=Java Streams)
announcement - icon

Since its introduction in Java 8, the Stream API has become a staple of Java development. The basic operations like iterating, filtering, mapping sequences of elements are deceptively simple to use.

But these can also be overused and fall into some common pitfalls.

To get a better understanding on how Streams work and how to combine them with other language features, check out our guide to Java Streams:

>> Join Pro and download the eBook

eBook – Persistence – NPI EA (cat=Persistence)
announcement - icon

Working on getting your persistence layer right with Spring?

Explore the eBook

Course – LS – NPI EA (cat=REST)

announcement - icon

Get started with Spring Boot and with core Spring, through the Learn Spring course:

>> CHECK OUT THE COURSE

Partner – Moderne – NPI EA (tag=Refactoring)
announcement - icon

Modern Java teams move fast — but codebases don’t always keep up. Frameworks change, dependencies drift, and tech debt builds until it starts to drag on delivery. OpenRewrite was built to fix that: an open-source refactoring engine that automates repetitive code changes while keeping developer intent intact.

The monthly training series, led by the creators and maintainers of OpenRewrite at Moderne, walks through real-world migrations and modernization patterns. Whether you’re new to recipes or ready to write your own, you’ll learn practical ways to refactor safely and at scale.

If you’ve ever wished refactoring felt as natural — and as fast — as writing code, this is a good place to start.

eBook Jackson – NPI EA – 3 (cat = Jackson)